SIEMENS

Microcomputer Components

SAB 82257
High-Performance DMA Controller
for 16-Bit Microcomputer Systems

User’s Manual 09.86

Siemens Aktiengesellschaft

Straightforward ordering with the catalog
“Siemens Components Service, Preferred Products”.

Every year, a revised edition of the SCS catalog on Preferred Products (about 800 pages) is
published. This catalog comprises preferred products of the entire Siemens components
program including their main technical specs.

Orders for components as well as for the above mentioned catalog should be directed to your
nearest Siemens Office, Dept. VB, or Distributor.

Published by Siemens AG, Bereich Bauelemente, Produkt-Information,

BalanstraBe 73, D-8000 Miinchen 80

For the circuits, descriptions and tables indicated no responsibility is assumed as far as patents or other
rights of third parties are concerned.

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Siemens Aktiengesellschaft
in the Federal Republic of Germany and Berlin (West) or the Siemens Companies and Representatives
worldwide (see list of Siemens Offices).

Multibus™ is a registered trademark of Intel Corporation

Contents

Contents

AAA
SENE

1.2.2
1.2.3
1.2.4

2.1
2.2
2.21
2.2.2
223
224
225
2.2.6
2.3

241
24.2
2.5

3.1
3.1.1
3.1.2
3.2
3.2
3.2.11
3.2.1.2
3.2.1.3
3.2.14
3.2.15
3.2.2
3.3
3.31
3.3.2
3.3.3
334

Page
Introduction 13
The Advantageof DMA 13
DMA Characteristics e e e 15
PortsandChannels 15
TransferMethods 15
BusControl e e 17
Programmabilityo 17
Overview 21
General Information 21
DMA Operations o vt e 22
Single-Cycle and Two-Cycle Transfer. 22
Data Read (DMA with no destination pointer) 22
Write Constant (DMA with no source pointer) 24
DataChaining e 24
Fast Channel Switching 24
Synchronization of Data Transfers 25
Block Diagram 26
ReflectionsonSystem L 26
GeneralizedBus System L 26
Address SpacesandMapping oo 27
Upgradability 28
OperatingModes 31
BasicModes 31
LocalMode e 31
RemoteMode 32
Bus Interface OperatingModes 33
Local-Mode BusInterface L oo 33
186 MoOde 34
188MOdE o e e e e 35
8086 MOdE 35
8088Mode 37
286 MOdE 37
Remote-Mode BusInterface . . .- o L. 39
Typical System Configurations, 41
286 SYStEM 41
186SYSteM o e 43
8086 SyStem 43
Autonomous SAB 82257 Subsystem Lo L 46

Contents

4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.2
4.1.21
4.1.2.2
4.1.2.3
4.2
4.2.1
4.2.2
4.2.3

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

Page
BusOperation, 51
Local-Mode Bus Operations 51
286 Mode e 51
BusCycles 51
Bus Arbitration 55
ResetSignal 57
186/8086 Mode 58
BusCycles e 58
Bus Arbitration 63
ResetSequence e 65
Remote-Mode Bus Operations 67
BusCycles e 67
Bus Arbitration 71
ResetSequence 73
Communications Mechanism 77
CPU/SAB 82257 Communication v 77
Communication via Control SpaceinMemory 78
Communicationvia Slavelnterface 78
SAB 82257/CPU Communication 79
Memory-Based Communication 80
Hardware-Based Communication 80
SAB 82257/Peripheral Communication 81
Communication via DREQn/DACKn Signals 81
Communication via Bidirectional EOD Lines 84
ProgrammingandControl 89
RegisterModel 89
GeneralControl 93
Mode Selection e 93
GeneralCommands e 94
General Control Registers 95
ChannelControl e 104
ChannelCommands104
ChannelRegisters 109
CommandChaining e 118
Initialization 122
Initial State 122
Initialization and Channel Invoking 123
SetupRoutine L 126
Reflections on Compatibility 127

Contents

Page
7 DMATransfer 131
7.1 General 131
7.2 Synchronizationof Data Transfer 134
7.2.1 SUrvey ..o e e 134
7.2.2 Associated Control RegisterBits 134
7.2.3 External SynchronizationviaDREQSignals 135
7.24 Internal Synchronization 135
7.3 Masking of TransferRequests 136
7.4 BusRequestControl 136
7.41 Associated Control RegisterBits 137
74.2 Bus Request ControlinLocalMode 137
7.4.3 Bus Request ControlinRemoteMode 137
7.5 DataTransfer. 138
7.5.1 Two-Cycle Transfer 138
7.5.2 SingleCycle Transfer, 148
7.6 DataChaining e 150
7.6.1 Associated Control Register Bits and Parameters 150
7.6.2 ListChaining 153
7.6.3 Linked ListChaining 154
7.7 Terminationof Data Transfer 158
7.7.1 TerminationConditions 158
7.7.2 Associated Control RegisterBits 159
7.7.3 Initiation of Termination L 159
7.7.4 Execution of Transfer Termination 161
7.7.5 Saving Status on DMA Termination 161
8 Concurrent Channel Operation 165
8.1 SUIVEY . . . e 165
8.2 Associated Control RegisterBits 166
8.3 Control of Channel Priority 166
8.4 Priority Controlof Requests 167
9 InterruptControl 171
9.1 SUIVeY . . L e, 171
9.2 Associated Control RegisterBits 171
9.3 BasicSignals 172
9.3.1 Endof DMASignal (EOD) o i it 172
9.3.2 Interrupt Out Signal (INTOUT) 172
9.4 Hardware-Generated Interrupt L L 173
9.5 Software-Generated Interrupt 174
9.6 SUMMaAry e e 174

Contents

10

10.1
10.1.1
10.1.2
10.2

1

1.1
11.1.1
11.1.2
11.2
11.3
1.4
11.5
11.56.1
11.56.2

12

13

10

Page
ErrorDetectiono 177
Fatal Errors o e e e 177
ErrorConditions 177
Reactionon Fatal Errors e 178
Non-FatalErrors e 178
Operating Instructions 181
Channel Programming Examples 181
Example 1: ReadfromDisk 182
Example2: CRTRefresh 182
OperatinginlLocalMode 191
OperatinginRemoteMode 191
Connecting Peripherals o o 193
Performance e e 195
Latencies e e 195
TransferRates e 199
DeviceSpecifications.....................: 201
Siemens Worldwide (Addresses) 260

Introduction

Introduction

1 Introduction

1.1 Advantage of DMA

DMA controllers (DMACs) are dedicated to the task of controlling high-speed data block
transfers independent of the CPU. Typically, data is transferred between memory and I/O or
vice versa, although a few DMA controllers have capabilities to perform other types of
transfers normally done by the CPU.

The SAB 82257, for example, can transfer bytes or words between memories or between I/Os
on four independent high-speed channels.

In systems without DMA, data transfers must pass through the CPU and must therefore be
implemented in software. This normally involves the execution of an instruction sequence
for inputting, outputting, and tracking each byte/word of data in the block to be transferred.

Figure 1 illustrates the minimum sequence of instructions that must be fetched from
memory and executed by conventional CPUs to transfer a data block by one byte at a time. In
fact, most CPUs require much more instructions than shown here.

One disadvantage of this method is that CPU transfers turn out to be comparatively slow and
tie up the CPU for a long time. Another disadvantage is that the response time (startup time
for the first byte) is usually also slow, because the I/O device typically uses interrupts to
signal its readiness and the CPU interrupt service routine causes a significant time lag when
transferring the first byte.

A DMA controller performs direct transfers between the source and destination of data
without involving the CPU. All the steps illustrated in figure 1 are carried out independently.

In a memory-to-l/O transfer, for example, the starting address in the memory and the length

of the block to be transferred are written into the DMA controller by the CPU. This is done

prior to the transfer. The DMA controller quickly takes over control and starts to transfer data

when enabled by the CPU and the I/O device’s ready line becomes active. In most cases the

CPU is in idle state during this process. Upon completion of the transfer, the DMA controller

informs the CPU and releases control. DMACs are used, therefore, when one or more of the

following conditions or requirements are present:

® The CPU is busy with too many I/O operations to perform its other tasks properly.

@® The transfer must be faster than the CPU could perform it.

® The transfer response time (startup) must be shorter than the CPU could conveniently
provide.

Small and low-performance systems generally run without DMA. Medium-performance
systems may also be designed without DMA if the CPU can handle transfers fast enough and
still do its other work.

Whenever systems require fast transfers or fast response, DMA controllers are strong
candidates for performance enhancement. Not only do they perform the transfers faster than
CPUs (the SAB 82257, for example, provides high-speed transfers of up to 8 Megabytes per
second), their response time is also significantly better. Here are a few examples where DMA
is often the best choice to make:

® hard disk and floppy disk controllers,

@ scanning operations, such as CRT /0O,

® data acquisition,

13

Introduction

® memory-to-memory transfers,

@ backup storage (I/O to 1/0),

@ fiber optic links,

@ block transfers in networking, multiprocessing, or multiprogramming.

The trade-off for this speed is that the CPU typically remains idle and lacks full or partial
control of the system bus while the DMA is operating. This can affect not only total system
throughput, but also such things as memory refresh and other interrupts.

Figure 1
Typical CPU I/0 Sequence

Read Source Port

J

Write to
Destination Port

l

Increment
Address
Counter

4

Increment
Byte
Counter

Byte Count
Equals
Block Length
?

Yes

14

Introduction

1.2 DMA Characteristics

All DMA controllers are programmable, because the CPU must at least write a block length
(byte count) and memory start address to them before they can start to manage a data
transfer. The start address is incremented or decremented as the transfer proceeds, and the
byte counter is decremented from the specific block length to zero.

Beyond this, however, DMA controllers vary substantially in their characteristic and
capabilities. The following sections provide a general survey of the characteristics of DMA
controllers, with only occasional reference to the SAB 82257 in particular.

1.2.1 Ports and Channels

Every data transfer has a source port and a destination port. For example, in memory-to-l/O
transfers, memory is the source and I/O is the destination. The means of controlling and
tracking the exchange of data between the two ports is called a “channel”. A channel
includes the hardware for address and byte counting, bus control, and coordination of the
entire transfer process. Each port in a channel has its location specified either by the DMA
address generation mechanism or by hardwiring. The SAB 82257, unlike most other DMA
controllers, generates addresses for both, memory and |/O ports during each byte/word
transfer; in other DMA controllers, the /O port is hardwired. The ability to generate two
addresses means that the DMA controller SAB 82257 can do memory-to-memory transfer on
one channel whereas others either cannot do it at all or require two channels to do it.

Some DMA controllers have single channels, others, like the SAB 82257, have multiple
channels which means that they can keep track of multiple interleaved transfers.

1.2.2 Transfer Methods

In section 1.1 we've mentioned the difference between handling I/O by conventional CPU
instructions and direct memory access. Figure 2 expands this topic by comparing conven-
tional CPU instructions with two different methods of DMA transfer. This figure shows the
read and write cycles needed to accomplish the transfer of a single byte/word of data.

Figure 2a illustrates conventional CPU I/O instruction activity. The number of read and write
cycles is approximated: many CPUs require more cycles than shown. The CPU instructions
at least cause the execution of all steps illustrated in figure 1, plus additional housekeeping
such as testing whether the next byte/word is ready for transfer.

Figure 2b illustrates a “sequential” or "two-cycle” DMA transfer in which a byte/word is read
from the source port (in figure 2b: memory) into the DMA controller, and is then written to
the destination port. Sequential transfer provides speeds that match or exceed the capability
of most serial communications processors, and of many other /0 or memory devices. This
method can be implemented on each of the four channels of the SAB 82257, and allows a
total data rate of up to 4 Mbytes/second.

Figure 2c illustrates a "simultaneous” or "single-cycle” DMA transfer in which a byte/word is
transferred directly from the data source to the data destination in a single bus cycle. This
fastest transfer method can also be implemented on each of the four SAB 82257 channels,
and allows a total data rate of up to 8 Mbytes/second as single channel data rate or as
cumulative data rate of multiple channels (simultaneous operation of several channels in
single-cycle mode).

15

Introduction

Figure 2

Comparison of Various 1/0 Transfer Methods

Fetch and Read Cycles

a Write Cycle
Conventional
Programed
Instruction
Sequence
CPU Memory 110 DMA
Read Cycle
b Write Cycle
DMA
Sequential I I
Transfer
CPU Memory 110 DMA
Read/Write Cycle
c ‘ ’
DMA
Simultaneous I I l I] |
Transfer | * * —

CPU Memory

110 DMA

Bus

Bus

Bus

16

Introduction

Another method also used on certain DMACs is called “cycle-stealing” transfer. This
technique works in a manner similar to the one shown in figures 2b and 2c, except instead of
taking control of the bus it causes the DMA data transfers to be interleaved with CPU cycles
where dynamic memory otherwise would be refreshed. This method inhibits memory
refresh when DMA occurring and, additionally, reduces DMA throughput in some cases.

All DMA transfers interrupt dynamic memory refresh by the CPU, and most of them obstruct
the CPU. Therefore, it is important to consider these implications when making the trade-off
for higher DMA transfer speed.

1.2.3 Bus Control

Most DMA controllers do not control the system bus (processor bus) in the way it would be
controlled by a CPU. For example, many DMA controllers neither have a straightforward
interface to the system data bus (but rather multiplex a portion of the memory address to the
data bus from which it must be latched by external logic) nor do most of them generate all of
the bus control and status signals that a CPU would generate, and therefore they lack some
degree of bus control.

The SAB 82257 has an adaptive bus interface, which means that it directly fits — per hardware
and/or software configuration — into all the conventional 16 (and 8)-bit microprocessors like

® SAB 8086
® SAB 8088
® SAB 80186
® SAB 80188
® SAB 80286

without requiring additional TTL glue chips (i.e. all status and bus timing information is
identical with that of the above CPUs if the SAB 82257 operates in the corresponding
interface mode). Therefore it can use the same support components such as latches,
transceivers, controllers and arbiters as are used by the corresponding processor. This
property considerably simplifies design and reduces the number of required parts.

1.2.4 Programmability

The way a DMA controller starts, transfers data, and stops is determined by control
information which the CPU writes to the DMA controller prior to the transfer. Status
registers, which can be read by the CPU to determine the transfer condition after the DMA
controller stops transferring are typically provided as well. The degree of programmability is
directly related to the DMA controller’s flexibility of handling a variety of transfer tasks. Most
DMACs are quite limited in their programmability.

In contrast, the SAB 82257 provides more than 80 bytes of on-chip, user-accessible, logically
ordered registers used to tailor the device (and retailor it between operations) to a wide
variety of tasks and environments. Additionally the CPU does not only communicate with the
SAB 82257 through the registers as it is the case with conventional DMA controllers.
Communication is also memory-based. The CPU generates a “command block” somewhere
in memory, informs the SAB 82257 where it is and issues a "start channel” command. On
getting the start command, SAB 82257 autonomously loads the entire command block,

17

Introduction

which contains all the information necessary to execute the DMA operation (source, destina-
tion pointers, byte count, each 24 bits long), from memory into its on-chip channel register
and starts execution. This topic, as well as the other ones described earlier, are detailed in
the following chapters. We have introduced them here to simply give a generalized
framework that can be used to launch a more detailed discussion of the SAB 82257 DMA
controller.

18

Overview

Overview

2 Overview

2.1 General Information

The SAB 82257 is a high-performance, general-purpose, four-channel DMA controller tai-
lored for efficient high-speed data transfer between peripheral devices and memories. It is
either coupled tightly with a companion CPU (local mode) or working in stand-alone
applications using the remote mode. The SAB 82257 provides a complete direct interface to
the SAB 80286 as well as to SAB 80186/188/86/88 bus. For example, in an SAB 80286 CPU
environment the SAB 82257 generates the same signal levels and timings that the SAB 80286
CPU would generate to accomplish a transfer. Unlike with most other DMA controllers no
external TTLs are required. For this reason, and because of its extensive programmability for
operations on data and data flow, the SAB 82257 unburdens not only the CPU but also the
system designer.

The SAB 82257 is also outstanding with respect to performance. Its four superfast DMA
channels — transfer rates up to 8 megabytes per second are possible — make it one of the
most powerful monolithic 16 (and 8)-bit controllers to service fast devices. Interrupt signals
can be generated under several conditions. If multiple DMA controllers are needed, multiple
SAB 82257 DMACs can be integrated very easily by using a simple local bus arbiter logic.
Finally, the SAB 82257 is one of a few DMA controllers that provide source or destination-
oriented data chaining (two chaining modes) as well as conditional command chaining
(jumps within channel program based on several conditions).

A brief survey of the SAB 82257's features is given in the following. Each of the points is
described more thoroughly in this and other chapters.

Features

® 16-bit DMA controller for
16-bit family processors
— SAB 80286
— SAB 80186/188
— SAB 8086/88
4 independent channels
16 megabyte addressing range
16 megabyte byte count
Memory-based communication with CPU
Transfer rates up to 8 megabyte/s

Sinala_cvele and hwaoocvela trancfar
SiNGgie-CyCie and two-CyCi€ ransiei

Automatic chaining of command blocks
Automatic chaining of data blocks

Local and remote (standalone) mode
Support of 16-bit and 8-bit data buses
Programmable synchronization modes
Programmable control of channel priorities
Direct and fast CPU/channel communication

21

Overview

2.2 DMA Operations
This section contains a survey of the SAB 82257 DMA operations.

2.2.1 Single-Cycle and Two-Cycle Transfer

Each of the four independent high-speed channels controls data transfer in two basic
operating modes:

@ single-cycle mode

® two-cycle mode

In single-cycle mode, bytes or words (16 bit) are transferred directly from the data source to
the data destination in a single bus cycle per transfer. This mode enables a total data rate of
up to 8 megabytes per second, and that as single channel data rate or as cumulative data rate
of multiple channels (simultaneous operation of several channels in single-cycle mode).
Thus the advantage in single-cycle mode lies in speed.

In two-cycle mode, source data is always stored within the SAB 82257 before being sent out
to the destination. Although half as fast as single-cycle transfer, it has several compensating
advantages. Since the data actually enters the controller, there is a possibility to act on the
data.

A special feature of two-cycle transfer is “automatic assembly and disassembly” of data in
bytes and words, meaning that the data can be read as one 16-bit word and written as two
bytes, or vice versa. This is often desirable when using 8-bit-wide peripherals in a 16-bit
system. In two-cycle transfer mode, data may also be transferred from one memory region
to another which is impossible with single-cycle transfer.

2.2.2 Data Read (DMA with no destination pointer)

A special modification of the two-cycle data transfer is the transfer without destination
pointer. In this mode, only the source bus cycle of a two-cycle data transfer is executed. The
data byte or word is read into the data assembly register (DAR) of the SAB 82257 but is not
written out.

Other applications:

® Refresh dynamic memory by simply executing dummy read cycles
@ Skip a peripheral data block in a sequential access memory

® Search a definite byte/word in a memory block.

22

Overview

Figure 3

Classes of SAB 82257's DMA Operations

 — —/ —
Single-Cycle
Transfer
CPU Memory DMA 110
Read Write
| — — —
Two-Cycle
Transfer
Py Memory DMA 110
Read
— —] I—
Data Read %
CPU Memory DMA 110
[] Write
|
—/ — —/
Write Constant %
CPU Memory DMA 110

23

Overview

2.2.3 Write Constant (DMA with no source pointer)

A special modification of the two-cycle data transfer is the transfer without source pointer. In
this mode, only the destination bus cycle of a two cycle data transfer is executed. Thereby a
byte or word specified within the command is used as source data. Thus, this DMA transfer
operates like a literal or constant transfer. This is very useful for writing a command byte or
word to a peripheral register.

Other applications:

® Fill a memory block with a constant
® Erase a peripheral data block

® Write a command to a register

2.2.4 Data Chaining

Often it is necessary to gather various source data blocks to one destination (source data
chaining) or, conversely, to scatter data from one source to several destination block
locations (destination data chaining). The SAB 82257 DMA controller offers source and
destination chaining in two basic modes:

@ list data chaining

@ linked list data chaining.

In list data chaining mode, each data block of a data chain is specified by a list element of a
chaining list. After each particular block transfer, the next list element is processed. Going to
the next block only takes one microsecond (at 8 MHz system clock).

In linked list data chaining mode, each list element specifying a particular data block also
holds a pointer (link pointer) to the next list element which should be processed. Thus, data
blocks can be included, removed, or their sequence altered dynamically by manipulating the
link pointers through the CPU. This feature, for example, can be used for serial data
communications controllers, where different blocks represent different types of information,
like header, address, tail, and so on. Linked list chaining is a little bit slower, but offers
greater flexibility than list chaining.

2.2.5 Fast Channel Switching

For high-speed DMA controllers with multiple channels, it is very important that no time
penaity {no latencies) be imposed on them when switching from one channel to another
during data transfer. Even though the SAB 82257 is a multi-stage pipelined, microprogram-
controlled machine, channel switching imposes no performance penalty on the SAB 82257.
Depending on the channel requests and the priority scheme used, as for example.

@ fixed priority or

@ rotating priority

the data transfer can be switched from one channel to the other after each bus cycle. In the
case of rotating priority of all four channels, there is no discrimination of any channel. Thus,
a data transfer rate of 2 Mbytes/s can be processed per channel, if all the channels are active.

24

Overview

2.2.6 Synchronization of Data Transfers

For synchronization of DMA transfers the SAB 82257 distinguishes basically two modes:
@ external synchronization
@ internal synchronization (free running).

The preferred synchronization mode is the external synchronization of DMA transfers. The
external DMA request may be issued from the source (source synchronization) or destination
(destination synchronization) device. It can initiate a single-cycle or a two-cycle DMA
transfer. The external synchronization allows to control input/output operations at the data
rate of peripheral device and to occupy the bus only if the peripheral is really able to receive
or to transmit data.

The DMA transfer can also be performed in a free-running mode, i.e. without any external
synchronization. This is advantageous for memory-to-memory transfers.

Free-running data transfer is also performed during a continuous DMA request or in the data
block multiplex subchannel after channel start. Note that on the byte/word multiplex channel
every DMA cycle has to be started with a request.

Figure 4
SAB 82257 Block Diagram

Bus Interface Unit Address Unit (entral Control

Internal Channel Requests —=

ALU

A . A £ Byte Count Unit Priority channel
Addr. (- — Address - 2 4 Yy Logic = = Control
_ Incrementer 5 Signals
Pointer ?the ‘
Burst | Registers ounters Instruction
Counters Pointer

¢ & -

p— A _ N
Data < Data ¢ Internal Data Bus :>
NV Registers N
A @ ROM
Data Path
Control Data Handler
. Channel Microinstruction
Bus N Bus Command Cache
Controt = = Registers
Signals Control <—:\ Data) L _I . g {
Registars F Control Instruction Reg.
Status

Registers
(LK E— Timing 9 Pipeline
RESET Generator Registers

25

Overview

2.3 Block Diagram

The SAB 82257 is built as a muiti-stage pipelined, microprogram-controlled machine with
dedicated hardware for time-critical operations. This is because in most applications it will
perform high-speed DMA operations on multiple channels where, for example, no time
penalty should be imposed when switching from one channel to another.

The SAB 82257 is internally divided into the functional units depicted schematically in figure
4. The SAB 82257 block diagram also includes the major logic blocks and some of the
accessible, user visible registers. The data interconnection paths are also shown. Not shown
are the various control signals between the functional units. A detailed description of the
logic blocks and their functions can be found in the following sections.

2.4 Reflections on System

2.4.1 Generalized Bus System

Three types of buses are generally referred to in this manual (see figure 5):

® local bus,
® system bus and
@® resident bus.

The local bus is the bus comprised of signals coming directly from the microprocessor and/
or SAB 82257 components. The local bus is generally not buffered.

The local bus is interfaced with components like bus arbiter, bus controller, address latches,
data drivers to generate a system bus. The system bus is a multiprocessor bus, i.e. it can be
used by other processors, too. All the resources on the system bus are accessible for each
bus master. Since there can be multiple bus masters competing for access to shared
resources on the system bus, the system bus must be arbitrated ot only one master at any
given time.

The local bus can also be interfaced by components like bus controller, address latches and
data drivers to form a so-called resident bus. The resident bus is private to the local bus
master, i.e. no arbitration is necessary for using this bus.

Note:
All these buses may be 8 bit or 16 bit wide. In general, a 16-bit bus leads to a higher
throughput and an 8-bit bus requires less interface components.

The memory on a 16-bit bus must be (16 bit) word-organized, byte-addressable as for SAB
8086 systems.

26

Overview

Figure 5
Generalized Bus System

1.
. Resident Bus o >

J

Interface ﬁ

Ve !
.
| |
b
- 3
Processor) " m}
N 2 i
@® €|
5 &l
3 A
3 wn ;
N
Interface
V
re A . J ‘
) J

Local Bus-Compatible Component
e g. SAB 82257 for 80186 and 80286 Processors

2.4.2 Address Spaces and Mapping

Since the SAB 82257 can access memory components located in two different address
spaces — like the SAB 8086, SAB 80186 and SAB 80286 microprocessors — two types of

address spaces are generally referred to in this manual:

® memory space and

® /O space.

The memory space, which coincides with the CPU’s memory space, may contain

@ up to 16 Mbyte, if the SAB 82257 works tightly coupled with an SAB 80286 processor, or
if it works loosely coupled with a CPU by means of the system bus

(remote mode);
® up to 1 Mbyte, if the SAB 82257 works tightly coupled with SAB 80186/188/8086/88

processors.

27

Overview

The 170 space, which may either coincide with the CPU’s I/0 space (in local mode, see section

3.1.1) or be private to the SAB 82257 (in remote mode, see section 3.1.2), may contain

® up to 16 Mbyte, if the SAB 82257 works tightly coupled with an SAB 80286 processor, or
if it works loosely coupled with a CPU by means of the system bus;

® up to 1 Mbyte, if the SAB 82257 works tightly coupled with SAB 80186/188/8086/88
processors.

If the SAB 82257 works in a stand-alone application using remote mode,

® the memory space is called "system space” and
® the I/O space is called "resident space”
throughout the rest of this manual.

The SAB 82257 does not distinguish between accessing a peripheral and accessing a
memory. Thus, either peripheral or memory can belong to either of the two spaces. Each
space can independently be 8 bits or 16 bits wide.

2.5 Upgradability

The SAB 82257 provides complete upward-compatibility with the advanced DMA controller
SAB 82258. The SAB 82258 offers enhanced functions (i.e. data handling, improved flexibility
of DMA channels, etc.) beyond the performance of the SAB 82257.

Each system or application can easily be upgraded, as the SAB 82257 provides com

applicatio easily be upgraded, as the SAB 822
on any level.

atibility
audniy

Interfaces

Both devices have identical bus interfaces for 286 mode, 186 mode and remote mode.
Therefore both DMA controllers fit into all the processor systems described. The DMA
interfaces are compatible as well. Upgrading a system hardware is no problem at all,
because hardware redesigns in existing systems are not required due to compatibility.

Programming Technique

Portating system software to an SAB 82258 system is also no problem. The arrangement of
the SAB 82257 control registers and even the bit arrangement within these registers can be
found within the SAB 82258 as well. The locations of the control bits have been chosen such
that upgrading is allowed directly. If the control registers and bits are used as described in
this manual, the programmer can be sure that any software (channel programs including
data chain lists, etc.) written for the SAB 82257 will run on the SAB 82258 without requiring
changes. Changing the channel programs will be necessary, of course, when utilizing the
additional functional features of the SAB 82258!

Summary

In addition to offering excellent performance, the SAB 82257 opens the door to more
advanced DMA controllers. For the reasons pointed out in this section the SAB 82257 is the
ideal component for getting into touch with the growing family of Siemens high-perform-
ance DMA controllers (please also refer to section 6.5 Reflections on Compatibility).

28

Operating Modes

Operating Modes

3 Operating Modes

3.1 Basic Modes

Concerning the connection to a processor, the SAB 82257 has two basic modes of operation:

@® local mode (SAB 82257 tightly coupled to a processor) and
® remote mode (SAB 82257 loosely coupled to a processor).

3.1.1 Local Mode

In local mode the SAB 82257 is directly coupled to the processor and uses the same local bus
(see figure 26). The bus arbitration sequence (HOLD/HLDA and RQ/GT protocol, respectively)
ensures that only one of those devices occupies the bus at any time. All addresses issued by
the SAB 82257 can be separately programmed for memory or /O space. Both spaces are 16

Mbyte large for the 286 and 1 Mbyte large for the 186/188/8086/88 mode.

The local mode combination of processor and SAB 82257 working through a shared bus is
very compact and efficient. This operating mode is possible with processors like SAB 8086/

8088/80186/80188/80286.

Figure 6
Local Configuration

CPU
Bus
Arbitration
SAB
82257

System Bus (Multibus)

110 Space
(16 Mbyte)

¢

Memery
Space
(16 Mbyte)

31

Operating Modes

3.1.2 Remote Mode

Although the main application of the SAB 82257 will be to work tightly coupled with a
companion CPU, the SAB 82257 is also designed to work together with a processor via the
system bus. In this second basic operating mode, called remote mode, the SAB 82257 has its
own set of bus interface circuits and can thus dispose of its own local bus (see figure 7).

This allows the DMA controller to work in parallel to the main processor, accessing resources
on the resident bus most of the time, and accessing the system bus only for communication
with the processor.

All addresses issued by the SAB 82257 can be programmed separately for system or for
resident space (both 16 Mbyte). As a result of the private bus (resident bus) of the SAB 82257,
a bus arbitration sequence is only necessary for system space accesses. However, although
the SAB 82257 is master and arbiter of its local/resident bus, the SAB 82257 registers are
always accessible for the processor via the system bus.

The remote configuration (see figure 7) is ideally suited to interface the SAB 82257 to any
processor (including 68000, 32000 etc.) and for producing modular systems where every
board has a specific function. For example, a subsystem dealing with Winchester and floppy
disks could be put on a separate board holding the SAB 82257, sufficient resident memory
and the necessary controllers.

Figure 7
Remote Configuration

SAB
82257 Processor
w
2
@
€
Resident Bus S
b
System Space
(16 Mbyte)
Peripheral
Resident
Space
(16Mbyte)

32

Operating Modes

3.2 Bus Interface Operating Modes

3.2.1 Local-Mode Bus Interface

In local mode the SAB 82257 bus interface has two basic timing modes:

@® the 286 mode and
@ the 186 mode.

In 286 mode, the SAB 82257 is connected to the SAB 80286 processor bus (processor pins)
thus sharing all the necessary bipolar support chips (latches, transceivers, controllers and
arbiters). All status and bus timing information is identical with that of the SAB 80286 bus.

In 186 mode, the SAB 82257 is connected to the SAB 80186 processor bus (processor pins).
All status and bus timing signals meet the SAB 80186 bus timing signals.

In addition there are three derivates of the 186 mode:
@ the 188 mode,

® the 8086 mode and

® the 8088 mode.

In 188 mode, the SAB 82257 operates with the SAB 80188. In this mode the signais and
timings are identical to 186 mode, but the physical bus width (in general mode register) must
be programmed to 8 bit.

In 8086 mode, the SAB 82257 operates with the SAB 8086 using RQ/GT protocol for bus
arbitration instead of the HOLD/HLDA protocol in the other modes. All other signals and
timings are identical to the 186 mode.

Figure 8
186 Mode Configuration
SAB
80186
HOLD HLDA §
4
(%]
SAB
82257
v

33

Operating Modes

In 8088 mode, the SAB 82257 operates with the SAB 8088. In this mode the signals and
timings are identical to 8086 mode, but the physical bus width (in general-mode register)
must be programmed to 8 bit.

3.2.1.1 186 Mode

If 186 mode is selected via the AREADY and HLDA pins on RESET, all the signals and timings
are compatible with the SAB 80186 processor. This means that the SAB 82257 has a
multiplexed bus identical to that of the SAB 80186, and in 186 mode configuration (see figure
8) all signals with the same names (see figure 9) are directly interconnected with the ones of
SAB 80186.

Only exception: CLK is connected to CLKOUT of SAB 80186.

A0 to A7 are bidirectional in the sense that they are latched in along with chip select (CS)ata
proper time (derived from status signals SO to S1) to achieve a synchronous chip select.

Figure 9
Pinning in 186 Mode

CLK RESET SREADY AREADY

l

from SAB 8086 A19/56
:> A¥%/S3
AT5..A8
A7 .. A0
DREQ3 :>
EQO
DREQ) Bus ¢ K—> ADS...ADO
v |~ BHE
DACKS £ saB ¥
i <: 5 62257 . -3
DACKO $(in8os6 Mode) | [, =5
I L~ ALE
EOD3 . — DIR
B —) -
|« RQ/GT
Arbitration { l~— HLDA
Slave l—— TS
Inferfu?{ |l RD
Power Supply WR
[Toweroupey
GND vCC

34

Operating Modes

3.2.1.2 188 Mode

If 186 mode is selected via the AREADY and HLDA pins on RESET and the physical bus width
is programmed to 8 bit in the general mode register (GMR), the SAB 82257 operates in 188
mode and its bus interface is compatible to the SAB 80188 processor.

Since there is no difference to operating in 186 mode — including signals, timings, pinning,
etc. — the 188 mode is not described explicitly in the subsequent chapters.

Throughout the remainder of the manual, all descriptions and information concerning the
SAB 82257 operating in 186 mode are valid also for operating in 188 mode.

Figure 10
188 Mode Configuration
AN
SAB
80188
HOLD HLDA S
4
w
in_GMR: -
- MEMBUS=0
-10BUS =0 SAB |
82257
J\/'

3.2.1.3 8086 Mode

If 8086 mode is selected via the AREADY and HLDA pins on RESET all the signals and timings
are compatible to the 8086 processor. This means that the SAB 82257 has a multiplexed bus
identical to that of the SAB 8086, the arbitration between the different bus masters on the
local bus is done using RQ/GT lines, and in 8086 mode configuration (see figure 11) all
signals with the same names (see figure 12) are directly interconnected with the ones of the
SAB 8086.

Exceptions:
— CLK is connected to CLKOUT from SAB 8086.
— After entering the 8086 mode, pin HLDA has no function.

A0 to A7 are bidirectional in the sense that they are latched in along with chip select (CS)ata
proper time (derived from status signals SO to S1) to achieve a synchronous chip select.

35

Operating Modes

T

GND vCC

Figure 11
8086 Mode Configuration
4/\
SAB
8086
RA/GT 1§
14
)
SAB
82257
A4
Figure 12 A7 AREADY
Pinning in 8086 Mode (LK REXET SRE
fr-t;n‘\v;A,E;BO‘IBé A19/S6
:> A%/S3
A15..A8
OREQ3 A7 A0
DREQO —
P Bus @%SMADO
DACK3 E saB o0
: < & 82257 =7
DACKO £ (in 186 Mode) T
£ — ALE
gl | g
FO00 — DEN
Arbitration { :Egz
Slave le—— T8
lnferfu?{ l—— RD
Power Supply | }=—@w WR
/—Mﬁ

36

Operating Modes

3.2.1.4 8088 Mode

If 8086 mode is selected via the AREADY and HLDA pins on RESET and the physical bus
width is programmed to 8 bit in the general mode register (GMR), the SAB 82257 operates in
8088 mode and its bus interface is compatible with the SAB 8088 processor.

Since there is no difference to operating in 8086 mode — including signals, timings, pinning,
etc. — the 8088 mode is not described explicitly in the subsequent chapters. Throughout the
remainder of the manual, all descriptions and information concerning the SAB 82257
operation in 8086 mode are valid also for operating in 8088 mode.

Figure 13
8088 Mode Configuration

4/\
SAB
8088
RA/GT H
9|
wv
in GMR: ————
~MEMBUS = 0
-10BUS =0 SAB
82257

3.2.1.5 286 Mode

If 286 mode is selected via the A23 pin on RESET all the signals and timings are compatible
with the SAB 80286 processor. This means that the SAB 82257 has a demultiplexed,
pipelined bus identical with that of the SAB 80286, and in 286 mode configuration (see figure

14) all signals with the same names (see figure 15) are directly interconnected with the ones
of the SAB 80286.

Exceptions: CLK, RESET and READY come from the SAB 82284.

37

Operating Modes

Figure 14
286 Mode Configuration
VAN
SAB
80286
HOLD HLDA 45
g
%)
SAB
82257
J\/’
Figure 15
Pinning in 286 Mode CL{K RESET REA[JY
from SAB 82284 A23 A8
E> AT . A0
DREQO ~
" Bus
DACK3 . || E sas ~——= BHE
< 5 8257 M/TO
DACKO 5 (in 286 Mode) -
- Si
G| -
EoD0 Arbitration { [How
[=—— HLDA
Slave _ (f=—— T8
lnferfuce\{ - RD
Power Supply | - WR
!
GND v(C

38

Operating Modes

Note:
— For operation of the SAB 82257 together with the SAB 80286 processor in “protected
virtual address mode” certain special considerations are necessary.
The SAB 82257 itself does not support the protected virtual addressing of the SAB 80286
CPU, it only works with real addresses. But this does not mean a loss in security provided
that the following conditions are fulfilled:
1. The 80286 kernel software must check all the protection rules during the setup routine
for the SAB 82257 (this is supported by the 80286 instructions).
2. The 80286 kernel has to translate the logical addresses into the physical addresses
and to perform the limit checks for all block transfers.
3. All SAB 82257 registers should be memory-mapped and access to them should only
be allowed for an 80286 kernel routine (task isolation).

Normally, an I/O utility routine is provided by the operating system to service the SAB
82257.
No direct user access should be allowed from lower privilege levels to the SAB 82257.
The real addresses can be generated only by using the protection mechanism of the SAB
80286 and hence are checked against protection violation.

— Asynchronous selection as slave through the SAB 80286 as in 186 mode is also provided
here.

3.2.2 Remote-Mode Bus Interface

In remote mode the SAB 82257 bus interface is slightly different from that in 286 mode. As a
result all bus timing information is identical to that of the SAB 80286 bus.

This means that most of the bus signals (see figure 17) have the same function as in 286
mode,

the exceptions are: BREL, CS, HOLD and HLDA signal,

and in remote mode configurations (see figure 16) the same support logic, such as bus
controller and bus arbiter, as for the SAB 80286 processor can be used.

Since in remote mode the SAB 82257 is connected to the system bus as a bus master without
being directly coupled to a processor (the communication with the main CPU is done via the
system bus; system bus arbitration via HOLD and HLDA signals) and disposes of its own
local bus (see figure 16), the bus interface must support an arbitration of the local bus to
enable accesses to the SAB 82257 registers by the main processor.

This “local bus arbitration” in remote mode is done via the CS and BREL lines.

Note
For remote mode throughout this manual the I/O space is called the "resident space” and the
memory space is called the "system space”.

39

Operating Modes

Figure 16
Remote Mode Configuration

Periph.
Memory

{
<‘r Resident Bus § .
i

Bus
Interface

Bus
P inerface [
Address

w
DREQ 2{"}‘ @
0-3 SAB atus g
DACK 82257 ja

0-3
\‘/;_—— Addr. :
Select

—— BREL

Arbitrution{ —— HOLD
j=— HLDA

<:> Processor
Board

40

Operating Modes

Figure 17
Pinning in Remote Mode

(LK RESET READY

from SAB 82284

A23.A8
AT A0

=

DREQ3 "y K> 015..00
DREQO s
_____ B ___
DACK3 g SAB |=—= BHE
R G =74 -
DACKO & (in Remote Mode)
e — S0
EOzDB C> = BREL
EODO Arbitration { —— HOLD
~—— HLDA
Slave le—— S
Interface { l«—— RD

Power Supply

Vs

07

GND vCC

3.3 Typical System Configurations

3.3.1 286 System

The configuration in figure 18 shows a typical 286 system with the SAB 82257 where the
DMA controller is tightly coupled with the SAB 80286 processor. The SAB 82257 resides on
the local bus together with the processor thus being able to share all the support circuits,
latches, transceivers, bus controller, bus arbiter, clock generator, etc. To ensure that only one
of the two occupies the local bus, and hence the resident and system bus, at a time, the bus
exchange signals HOLD and HLDA are used.

As illustrated in figure 18, a master interrupt controller is also needed (e.g. SAB 8259A)
receiving the "End of DMA Signals” (EOD) 0 to 3 as interrupts. Interrupts may occur in this
configuration under any terminate condition, no matter whether internal or external, if
programmed to do so.

The peripheral subsystem example consists of 3 high-speed peripherals (e.g. hard disk, CRT
and communication lines).

41

Operating Modes

sjauunyy
10433135 4

Figure 18
286 System

j
d_\ Ssalppy k
[
_ saporag | k,
o WOYdd i
| sng 1044u0) %
| f 3Hg
, £2V-0V
,] ,
_ e —
“ i
! |
_ 89220 VS fit V9828 8YS | V88 8vs
I)8 SYAIX Saydye
|
" ; ‘ sng ssaJppy $ $
| , I | —]
| ! ANl A4
i | [J
_ _ ﬁ sng D4oQ
_ L
1
S) Si3-00 €2v-ov - -
“ S) B S10-00 €2V-0v
VO VATH VINI
| uQo3 L5228 98208 | <m@~mw
| uXIva avs Q10H G10H avs HINI
“ un3yg vl
_ ! ﬂ T
“ uao3 V
__ X1J
|
uo1§235 _ 18228
ydag | avs

42

Operating Modes

3.3.2 186 System

The configuration in figure 19 depicts an SAB 82257 used in a "186 system” (SAB 82257
tightly coupled with an SAB 80186 processor) which also contains an SAB 8087 math
processor. The SAB 82257 resides on the local bus together with the processor thus being
able to share all the support components. In this system, the support components are the
SAB 8086 bipolar components, latches, transceivers and bus controller.

An arbiter , e.g. SAB 82188 glue chip, is needed to arbitrate the SAB 8087 math processor and
the SAB 82257 controller, since the SAB 80186 processor has only one set of bus exchange
signals (HOLD and HLDA\) to ensure that only one of them occupies the local bus, and hence
the resident and system bus, at a time.

Some interrupt control logic is also needed (e.g. SAB 8259A) to process the four EOD signals.
Interrupts may occur in this configuration under any terminate condition, no matter whether
internal or external, if programmed to do so.

In 186 mode the SAB 82257 directly supports the SAB 80186 processor bus with 16 address
bits A0 to A15 internally multiplexed onto the data lines, address pins A16 to A19 are
multiplexed with status signals S6 to S3 and address pins A22 to A20 are used to generate
the control signals ALE, DEN and DT/R. The A23 pin serves as additional (asynchronous)
ready input AREADY. As a master the SAB 82257 in 186 mode offers address pins A15 to A0
as latched output and shares all the SAB 80186 support components with the processor.

The peripheral subsystem consists of up to 4 high-speed peripherals.

3.3.3 8086 System

The configuration in figure 20 shows a typical "8086 system” with the SAB 82257 where the
DMA controller is tightly coupled with an SAB 8086 processor. The SAB 82257 resides on the
local bus together with the processor thus being able to share all the support components. In
this system, the support components are the SAB 8086 bipolar components, latches,
transceivers, and bus controller.

The local bus arbitration is done via the bus exchange signals RQ/GT. Because there are two
RQ/GT lines no local bus arbiter is necessary (in contrast to SAB 80186 systems) if an SAB
8087 processor is added to the system as shown in figure 19. Some interrupt control logic is
also needed (e.g. SAB 8259A) to process the four EOD signals. Interrupts may occur in this
configuration under any terminate condition, no matter whether internal or external, if
programmed to do so.

In 8086 mode the SAB 82257 directly supports the SAB 8086 processor bus with 16 address
bits A0 to A15 internally multiplexed onto the data lines, address pins A16 to A19 are
multiplexed with status signals S6 to S3 and address pins A22 to A20 are used to generate
the control signals ALE, DEN and DT/R. The A23 pin serves as additional (asynchronous)
ready input AREADY. As a master the SAB 82257 in 8086 mode offers address pins A15 to A0
as latched outputs and shares all the SAB 8086 support components with the processor.
The peripheral subsystem consists of up to 4 high-speed peripherals.

Note that the system configuration for the SAB 8086/8088 in maximum mode is very similar
to the SAB 80186 configuration.

43

Operating Modes

Figure 19

186 System

sng HG'ELY-0V
1044u0) ejeq SsaJppy
[
_ ,
__Jsapodag
| ~1 WOdd —N Ksowap
" , — axnw
)8 | | vesmavs V2828 GVS
8828 gvS \z SHYAIX saydje
(0£L08 AVS) NIV N C
U PN sng D4o(/SS3IPPY N \#
Loy | | 1808
] avs
0528 o
19/
uoly2as ﬁ% |
yduag 525 Glav-0av | SLav-0av ,
" == vty 88128 VaH avoy X) ﬂ
€y avs |
h iszzs YOM L {104 IX V6508
%vQ avs Q10H B 98108 avs L
340 avs |
AQV3YS 1NONT) AQY3YS ul ,
ao3 % ﬁ a ,
h w |
L35I
AQV3dS JTELS -

44

Operating Modes

i
Figure 20
8086 System

R

Periph
Section

READY Al ROY2 SREADY
(82848 oy AREADY
CLK,RESET 1
i
R READY w5y HLOA SREADY AREADY
E00 ¢
SAB 80686 SAB
| | SAB K? lsid ROGT=—o RIAT ~oc oREQf——
e e BATH]
A16-AT AB-A® DA 7
ADO-AD1S _ 30-32 ADO-ADYS 50-S2_ TS |
-] RA/GT [~
SAB
8087 0-37
<:; ﬁ N Address/Data Bus
Latches XCVRS SAB 8208
SAB 8282A SABB28B6A | B(1
A | TT i
MUX'D _ |
Memory - ___.J‘
PROM | [
Decoder [—
Address Data Control
A0-A19,BAE

45

Operating Modes

3.3.4 Autonomous SAB 82257 Subsystem

The configuration in figure 21 depicts an "autonomous SAB 82257 subsystem” where the
DMA controller is the sole local bus master interfaced to a CPU only through the system bus.
In this SAB 82257 operating mode, called remote mode, the SAB 82257 can work in parallel
to the processor since it has its own resident bus with private resources on it. The SAB 82257
requires essentially the same support components such as latches, transceivers, bus control-
lers, bus arbiters, clock generators, etc., as an SAB 80286 processor with two buses and in
addition a standard slave select logic, so it can be addressed as a slave and read/written via
the system bus (e.g. Multibus) by a CPU.

As shown in figure 21, a CPU request to the SAB 82257 is indicated by the signal CS and RD
or WR. On being selected via the system bus, the SAB 82257 waits till it can get off the local
bus and then activates the BREL (bus released) signal. As a result, the register address
reaches the DMA controller and system bus access to SAB 82257 is achieved. The transfer
acknowledge signal (XACK) is generated to terminate the access. The BREL signal uses the
M/O pin since in remote mode the M/IO signal is not needed.

Since the SAB 82257 is the only master of the local/resident bus, it can start a local bus cycle

immediately, this means without any bus arbitration by a HOLD/HLDA sequence.

For system bus accesses, a special arbitration control of the local bus is necessary to prevent

a situation where

® the SAB 82257 waits to access the system bus thereby occupying the local bus and at the
same time

@ the CPU waits to access the SAB 82257 (via SAB 82257 local bus) thereby occupying the
system bus.

This problem can only be solved if, in the case of system bus accesses, the SAB 82257 does
not occupy the local bus until it has gained the system bus. Therefore, the SAB 82257 in
remote mode initiates all system bus accesses (and only those) with a HOLD/HLDA se-
quence. Thus the HOLD signal can also be used for distinction between the two address
spaces (local space, gobal space).

The peripheral subsystem consists of up to 4 high-speed peripherals.

Note
The bus interface and the slave select logic shown in figure 21 are standard, and are required
for any master/slave system using the system bus.

46

Operating Modes

Figure 21
Autonomous SAB 82257 Subsystem (Remote Mode)

e Resident Bus X :’> :Eer,'.,‘:,hr,

i i

B1 T L
,g;“; SAB SAB SAB
82288 8286A 8282A
PN
- B3
I —
CLK.RDY.RES > 82284
BHE,Addr Data
HOLD |— S0
82 ™
SAB
REN | 82289
|
. I 81 [OTR
L_iorea — 7.0 -
TOACK T 62288 7]
\ _
H | N >
o]___ IN L
SAB T AddrBHE N SAB
82257 ‘3{ 8203A
11
[t T
<V”Dah SAB
— ;> 8287A
T OF v —~
i T E
+5V I | L £
[L MUX | E
6 | SEL 57 _J -
‘ &
T :
(M/T0) BREL L 2
A
. MS240 ADRO-ADR7 BHEN
WR RD _
OF
]
[S — 4
|| Decoder ADR®-ADR23 1
FIRD!]
MWTC ~]
Delay
XACKK
I - _ LJ

Bus Operation

Bus Operation

4 Bus Operation

4.1 Local-Mode Bus Operations
4.1.1 286 Mode

4.1.1.1 Bus Cycles

The internal hardware of the SAB 82257 communicates with the CPU and the external
hardware via the bus using bus cycles.

Cycle Definitions
Three types of cycles are used to describe SAB 82257 operation:

® CLK cycle
® processor cycle and T-state
® bus cycle

CLK Cycle
A CLK cycle is one period of the clock signal at the SAB 82257 CLK pin. In standard systems,
the frequency of CLK may be 16 MHz.

Processor Cycie and T-State

The internal SAB 82257 logic is driven form an internal clocking system. One period of this
internal clock is called a T-state. In standard systems, the frequency of the clocking system is
8 MHz.

In 286 mode, the clocking system uses the CLK frequency divided by two. Therefore, only the
falling edge of CLK is important for the SAB 82257 timing and a T-state equals two CLK
periods. In 286 local mode, the SAB 82257 must share the support components with the CPU.
For correct operation in this case, the processor cycles of CPU and the T-states of SAB 82257
must be synchronized. This synchronization is done with the leading edge of the reset signal
(see section 4.1.1.3) or with the leading edge of the bus status signals (see section “"Bus Cycle
Status”).

Figure 22
T-State Definition

(LK
16 MHz

51

Bus Operation

Bus Cycle

A bus cycle consists of an integer number of T-states. In 286 mode, a bus cycle has a
minimum length of 3 T-states but, due to the pipelining of bus cycles, these bus cycles can
come at a rate of one bus cycle for every two T-states. Therefore, the maximum bus rate is 4
million bus cycles or 8 megabytes per second. The bus cycles are, of course, compatible with
the ones of the SAB 80286 microprocessor.

A bus cycle can be lengthened beyond the minimum by a delayed activation of the ready
signal (READY).

Bus Cycle Types

There are two basic types of bus cycles:
@ active bus cycles

@® passive bus cycles

Active Bus Cycles

For data transfers between the SAB 82257 and memory or peripherals, the SAB 82257
generates active bus cycles by activating the status signals S0, ST and M/IO. The SAB 82257
must be master of the local bus and control such a bus cycle. Such a bus cycle can be a read
or a write from or to memory space or I/O space.

A normal DMA transfer needs at least two bus cycles:

® the read from source and
@® the write to destination.

These two operations can be combined in a single bus cycle, for higher transfer rates (single-
cycle transfer). Source or destination is accessed by the SAB 82257 address and the
command, like a normal bus cycle, whereas the peripheral is selected by the DACKn signal.
The data does not flow through the SAB 82257 but directly from source to destination via the
data bus.

Therefore even for a write cycle data pins must float like for a read cycle. Because the SAB
82257 must control the bus cycle, the other bus pins function like during a normal bus cycle.

Note
For correct operation on a buffered data bus the direction of the data transceiver must be
controlled by the DACKn signal.

Passive Bus Cycles

If the SAB 82257 is not the master of the local bus, then the CPU can generate a bus cycle
which accesses one of the internal registers of the SAB 82257. The SAB 82257 monitors all
bus cycles and, when it is selected via CS, it executes the data transfer from the local bus into
the addressed register or vice versa, as requested.

When the SAB 82257 and a processor share the local bus, then a passive bus cycle is
normally a synchronous access to an SAB 82257 register, i.e. the processor activates the
status line SO or S1. The SAB 82257 monitors the status lines of the local bus and, when
selected via CS, it generates internal read and write signals which have the same timing as
the signals generated by the support chips. The end of this passive bus cycle is defined by a
READY activation in 286 mode. During execution of a passive cycle, the address signals A7 to
A0, BHE signal and CS signal are latched. The execution of a synchronous passive cycle is
fast enough to eliminate the need for wait states.

52

Bus Operation

If no activation of the status lines SO or ST is recognized, the SAB 82257 monitors the RD and
WR signals. By activation of one of these signals the SAB 82257 latches address A7 to A0,
BHE signal and CS signal. After the synchronization of the asynchronous signals RD and WR,
the SAB 82257 begins an asynchronous passive bus cycle. The end of this bus cycle is
defined by the trailing edge of a RD or WR signal.

Note
An asynchronous passive bus cycle requires more time than a synchronous one, because the

synchronization needs additional time.

When a passive bus cycle is lengthened beyond the minimal time, a read from an SAB 82257
register is made once and the result is latched to the output. Therefore, a change of register
contents during a passive bus cycle will not change the data read. By lengthening a passive
write bus cycle, the transfer of the data on the pins to the selected SAB 82257 register is
repeated until the end of the bus cycle. Therefore, only the last data on the data pins is stored
in the register.

When the SAB 82257 is not in possession of the bus all output signals except the following
are tristated:

- HOLD

— DACKO to DACK3

— EODO to EOD3

Bus Cycle Status

In 286 mode, there are three signals to indicate the type of a bus cycle:

® S0 signal

® 51 signal

® M/IO signal

The beginning of a bus cycle is indicated by SO or ST or both going active. The termination of

a bus cycle is indicated by the bus ready signal (READY) going active.

When the SAB 82257 is the master of the local bus, it can generate the following bus cycles
by activating S0, S1 and M/IO:

M0 S1 S0 Active Bus Cycle Type

0 0 0 Not Valid

0 0 1 Read from I/0 Space

0 1 0 Write into 1/0 Space

0 1 1 Not a Bus Cycle

1 0 0 Does Not Occur

1 0 1 Read from Memory Space
1 1 0 Write into Memory Space
1 1 1 Not a Bus Cycle

Note

In 286 mode, the M/IO signal is valid with the address on the address lines.

When the SAB 82257 is not the master of the local bus, the status signals are used as inputs
for detection of synchronous accesses to the SAB 82257.

53

Bus Operation

The following table shows the bus status and CS signals and their interpretation by the SAB
82257:

cs S1 S0 Description

1 X X SAB 82257 Is Not Selected, No Action
0 0 0 No SAB 82257 Access, No Action

0 0 1 Read from an SAB 82257 Register

0 1 0 Write into an SAB 82257 Register

0 1 1 Not a Bus Cycle

Note

The SAB 82257 is selected but no synchronous access is activated. In such a case the SAB
82257 monitors RD and WR signals for detection of an asynchronous access.

In 286 mode, the leading edge of the status is also used for the synchronization of the
internal SAB 82257 clock with the processor cycle. If the leading edge of status appears in the
first half of a T-state, the SAB 82257 will lengthen this T-state by one CLK period. Due to this
synchronization the first bus cycle of the processor after reset must not access SAB 82257
registers.

Bus High Enable (BHE)

The SAB 82257 works on a 16-bit bus as well as on an 8-bit bus. To control transfers of bytes
or words on such buses, there are two signals:

® bus high enable (BHE) and

@ the least significant address bit (A0).

A low on the BHE signal means that the data on the higher part of the bus (D15 to D8) is valid.
A low on the A0 signal means that the data on the lower part of the bus (D7 to DO0) is valid.
Therefore, an even-addressed byte is transferred on the lower data bus byte and an odd-
addressed byte is transferred on the higher data bus byte.

A full word can be transferred by using both data bus bytes (D15 to D0) and addressing the
lower (even) byte of the word in conjunction with an active BHE signal.

For transfers on an 8-bit physical bus both kinds of bytes, the even-addressed and the odd-
addressed byte, must be transferred over the lower data bus part. The transfer of an even-
addressed byte uses the same coding as a byte transfer on a 16-bit bus. The transfer of the
odd-addressed byte on the lower data bus half is indicated by BHE being high and A0 being
high.

The following table summarizes this description.

BHE A0 Valid Used for Notes
Data Bus Pins 16-Bit Bus | 8-Bit Bus
0 0 D15 to DO Yes No Word Transfer
0 1 D15 to D8 Yes No Odd-Addressed Byte on
16-Bit Bus
0 D7 to DO Yes Yes Even-Addressed Byte
1 D7 to DO No Yes Odd-Addressed Byte on
8-Bit Bus

Bus Operation

The physical bus width is indicated by the MEMBUS bit and the I0BUS bit in the general
mode register (GMR) for SAB 82257 bus cycles.

When an access to an SAB 82257 register is made (passive bus cycle) the SAB 82257 handles
the data in the correct way by sensing the BHE and A0 signal and acting according to the
above table.

Bus Ready

When a bus cycle must be lengthened beyond the minimal length, for supporting slower
memories or peripherals, this must be done with the bus ready signal.
If the bus ready signal is not active at the sampling point, the bus cycle is lengthened by one
T-state. The bus ready signal is also sampled one T-state later for additional lengthening of
the bus cycle. Therefore, the bus cycle length can be extended indefinitely by an integer
number of T-states.
In 286 mode the signal for indicating the ready status of the bus is:
® READY,
which is a synchronous input with the demand of meeting setup and hold times specified
in the data sheet.
Any activation of the READY signal which does not meet the setup and hold times may cause
erroneous SAB 82257 operation. Therefore, the SAB 82284 clock generator should be used
guaranteeing correct activation of the READY signal.
An active bus ready signal at the sampling time terminates the bus cycle.

4.1.1.2 Bus Arbitration

For the arbitration of the bus there are two signals:

® HOLD signal

® HLDA signal (HOLD acknowledge signal)

In local configurations, these lines are directly connected to the processor. Whenever the
SAB 82257 wants to perform one or more bus cycles it activates the HOLD signal. The
processor then surrenders the local bus as soon as possible. The processor tristates its bus
and acknowledges with a high on the HLDA signal. After sensing an active HLDA, the SAB
82257 gets onto the bus after a minimum of 3 CLK periods to perform bus cycles. If no further
bus cycles are necessary after completing a bus cycle the SAB 82257 will surrender the local
bus by floating the bus and switching the HOLD signal low 1 CLK after the last bus cycle. The
processor acknowledges this by a low on the HLDA signal and takes the bus.

The SAB 82257 can be forced off the bus if HLDA is driven inactive. When “losing HLDA" it
surrenders the bus

@ after the currently running bus cycle, or

@ after the bus cycle(s) following the running bus cycle.

The second case is for supporting inseparable bus cycle, which are:

@® word transfer on odd addresses, which is realized by two bus cycles where each transfer

is a byte transfer,
® fetch of 24-bit address pointers out of memory.

55

Bus Operation

Figure 23
HOLD-HLDA Sequence, 286 Mode

T ¢

Losing HLDA, 286 Mode

Ny

HOLD

HLDA

A

~ L (LK

[\
\ /

HOLD
1CLK
HLDA h
3CLK Cycles Min.
SAB 82257 on Bus
Figure 24

3CLK Cycles Min.

SAB 82257 on Bus

56

Bus Operation

The SAB 82257 signals the surrendering of the bus by floating the bus and removing the
HOLD signal.

If requests for bus cycles are present the HOLD signal will go active after a delay of two T-
states.

Note
After HLDA is made inactive, the SAB 82257 releases the bus within an average of 4 CLK

cycles.

4.1.1.3 Reset Signal

A reset signal on pin RESET (high level), forces the SAB 82257 into a well defined initial state.
This state is characterized as follows:
1. Upon activation of the RESET signal

— all channels are stopped

— all bus activities are stopped

— all tristate signals are in tristate and others in passive state.
2. After activation of the RESET signal

— above state is maintained, and in addition:

— some registers have defined values or defined control bits.

The contents of the registers are:

GMR: all bits are zero

GCR: undefined

GBR: all bits are zero

GDR: all bits are zero

GSR: — DMST bits for all channels: 0 (MSB) X (LSB)

— INT bit for all channels: 0
— S/R bit for all channels: 0

CPRn: undefined
SPRn: undefined
DPRn: undefined
LPRn: undefined
BCRn: undefined
CCRn: undefined
CSRn: all bits are zero
DARnN: undefined

The leading edge of the RESET signal is used to synchronize the internal clock generator in
the same manner as the SAB 80286 microprocessor. Therefore the processor cycles of SAB
82257 and processor are identical.

To continue operating the SAB 82257 in 286 mode after a reset sequence it is necessary that
the A23 pin is high at the falling edge of RESET and that the RM bit in the general mode
register (GMR) (written first after RESET) is low.

This operating mode is valid until the next activation of RESET. The RESET signal must be
activated for at least 16 CLK cycles.

57

Bus Operation

Figure 25
286 Mode after RESET

£

RESET /\)\
16 CLK Cycles Min.

S5 <.

A23 / \

4.1.2 186/8086 Mode

4.1.2.1 Bus Cycles

The internal hardware of the SAB 82257 communicates with the CPU and the external
hardware via the bus using bus cycles.

Cycle Definitions

Three types of cycles are used to describe the SAB 82257 operation:
® CLK cycle

@ processor cycle and T-state

® bus cycle

CLK Cycle
A CLK cycle is one period of the clock signal at the SAB 82257 CLK pin. In standard system:s,
the frequency of CLK may be 8 MHz.

Processor Cycle and T-State

The internal SAB 82257 logic is driven from an internal clocking system. One period of this
internal clock is called a T-state. In standard systems, the frequency of the clocking system is
8 MHz.

In 186/8086 mode, the clocking system uses the CLK signal directly. Therefore in 186/8086
mode, CLK and T-states are identical.

58

Bus Operation

Figure 26
T-State Definition, 186/8086 Mode

~ T-State

CLK
8 MHz

Bus Cycle

A bus cycle consists of an integer number of T-states. In 186/8086 mode, a bus cycle has a
minimum length of 4 T-states. Thus, a transfer rate of up to 2 million bus cycles or 4
megabytes per second is possible. The bus cycles are, of course, compatible with the SAB
80186 or the SAB 8086 microprocessors. A bus cycle can be lengthened beyond the
minimum by a delayed activation of the AREADY signal or the SREADY signal.

Bus Cycle Types

There are two basic types of bus cycles:

@ active bus cycles
@ passive bus cycles

Active Bus Cycles

For data transfers between the SAB 82257 and memory or peripherals the SAB 82257
generates active bus cycles by activating the status signals S0, ST and S2. The SAB 82257
must be master of the local bus and control such a bus cycle. Such a bus cycle can be a read
from or a write to memory space or I/O space. A normal DMA transfer needs at least two bus
cycles:

@ the read from source and

® the write to destination.

These two operations can be combined in a single bus cycle, for higher transfer rates (single-
cycles transfer). Source or destination is accessed by the SAB 82257 address and the
command, like a normal bus cycle, whereas the peripheral is selected by the DACKn signal.
The data does not flow through the SAB 82257 but directly from source to destination via the
data bus.

Therefore, even for a write cycle data pins must float like for a read cycle. Because the SAB
82257 must control the bus cycle, the other bus pins function like during a normal bus cycle.

Note
For correct operation on a buffered data bus, the direction of the data transceiver must be

controlled by the DACKn signal.

59

Bus Operation

Passive Bus Cycles

If the SAB 82257 is not the master of the local bus, then the CPU can generate a bus cycle
which accesses one of the internal registers of the SAB 82257. The SAB 82257 monitors all
bus cycles and, when it is selected via CS, it executes the data transfer from the local bus into
the addressed SAB 82257 register or vice versa, as requested.

When the SAB 82257 and a processor share the local bus, then a passive bus cycle is
normally a synchronous access to an SAB 82257 register, i.e. the processor activates status
line SO or S1. The SAB 82257 monitors the status lines of the local bus and, when selected via
CS, it generates internal read and write signals having the same timing as the signals
generated by the support chips. The end of this passive bus cycle is defined by the trailing
edge of the status signals in 186/8086 mode. During execution of a passive cycle the address
signals AD7 to ADO, BHE signal and CS signal are latched. The execution of a synchronous
passive cycle is fast enough, so no wait states are necessary.

If no activation of status lines SO or ST is detected, the SAB 82257 monitors the RD and WR
signals. On activation of one of these signals, the SAB 82257 latches the address AD7 to ADO,
BHE signal and CS signal. After the synchronization of the asynchronous signals RD and WR,
the SAB 82257 begins an asynchronous passive bus cycle. The end of this bus cycle is
defined by the trailing edge of the RD or WR signal.

Note
An asynchronous passive bus cycle requires more time than a synchronous one, because the
synchronization needs additional time.

When a passive bus cycle is lengthened beyond the minimum time, a read from an SAB
82257 register is made once and the result is latched to the output. Therefore, a change of
register contents during a passive bus cycle will not change the data read. By lengthening a
passive write bus cycle, the transfer of the data on the pins to the selected SAB 82257 register
is repeated until the end of the bus cycle. Therefore, only the last data on the data pins is
stored in the register.

When the SAB 82257 is not in possession of the bus, all output signals except the following
are tristated:

186 Mode 8086 Mode
HOLD DACKO to DACK3
DACKO to DACK3 EODO to EOD3
EODO to EOD3 ALE

ALE

Bus Cycle Status

In 186/8086 mode, there are three signals to indicate the bus cycle type:

@ SO signal

® S1 signal

® S2 signal

The beginning of a bus cycle is indicated by SO or ST or both going active. The termination of
a bus cycle is indicated by all status signals going inactive.

60

Bus Operation

When the SAB 82257 is the master of the local bus, it can generate the following bus cycles
by activating SO, S1 and S2:

1

—_

Active Bus Cycle Type

Not Valid

Read from |/O Space
Write into 1/0 Space

Does Not Occur

Does Not Occur

Read from Memory Space
Write into Memory Space
Not a Bus Cycle

D Mmoo O m‘
N
-2 0O0- =00 | W
—o—0-0-o0 ml
o

Note
In 186/8086 mode, the S2 signal can be active only if at least either SO or ST is active.

When the SAB 82257 is not the master of the local bus, the status signals are used as inputs
for detection of synchronous accesses to the SAB 82257.

The following table shows the bus status and CS signals and their interpretation by the SAB
82257:

cS S1 S0 Description

1 X X SAB 82257 is Not Selected, No Action
0 0 0 No SAB 82257 Access, No Action

0 0 1 Read from an SAB 82257 Register

0 1 0 Write into an SAB 82257 Register

0 1 1 Not a Bus Cycle

Note

The SAB 82257 is selected but no synchronous access is activated. In such a case the SAB
82257 monitors the RD and WR signals for detection of an asynchronous access. In 186/8086
mode, the higher address part is multiplexed with additional status information (A16/S3 to
A19/S6).

When the SAB 82257 is the master of the local bus the following table shows the additional
status information:

S6 S5 S4 S3 Channel Number for the
Running Bus Cycle

1 0 0 0 0

1 0 0 1 1

1 0 1 0 2

1 0 1 1 3

61

Bus Operation

Note
During an active bus cycle, S6 is always "high” and S5 is always "low". They can be used to
distinguish processor bus cycles from SAB 82257 bus cycles.

When the SAB 82257 is not the master of the local bus the following table shows the
additional status information:

S4 S3 Channel Number for the
Running Bus Cycle

0 0 0

0 1 1

1 0 2

1 1 3

Bus High Enable (BHE)

The SAB 82257 works on a 16-bit bus as well as on an 8-bit bus. To control transfers of bytes
or words on such buses, there are two signals:

® bus high enable (BHE) and

® the least significant address bit (A0).

A low on the BHE signal means that the data on the higher part of the bus (AD15 to AD8) is
valid.

A low on the A0 signal means that the data on the lower part of the bus (AD7 to ADO) is valid.
Therefore an even-addressed byte is transferred on the lower data bus byte and an odd-
addressed byte is transferred on the higher data bus byte. A full word can be transferred by
using both data bus bytes (AD15 to AD0) and addressing the lower (even) byte of the word in
conjunction with an active BHE signal.

For transfers on an 8-bit physical bus both kinds of bytes, the even-addressed and the odd-
addressed byte, must be transferred over the lower data bus part. The transfer of an even
addressed byte uses the same coding as a byte transfer on a 16-bit bus. The transfer on the
odd-addressed byte on the lower data bus half is indicated by BHE being "high” and A0
being "high”.

A summary of this description is shown in the following table:

BHE A0 Valid Used for Notes
Data Bus Pins 16-Bit Bus | 8-Bit Bus
0 AD15 to ADO Yes No Word Transfer
0 1 AD15 to AD8 Yes No Odd-Addressed Byte on
16-Bit Bus
0 AD7 to ADO Yes Yes Even-Addressed Byte
1 AD7 to ADO No Yes Odd-Addressed Byte on
8-Bit Bus

Bus Operation

The physical bus width is indicated by the MEMBUS bit and the IOBUS bit in the general
mode register (GMR) for SAB 82257 bus cycles. When an access to SAB 82257 register is
made (passive bus cycle), the SAB 82257 handles the data the correct way by sensing the
BHE and A0 signal and acting according to the above table.

Bus Ready

When a bus cycle must be lengthened beyond the minium length, e.g. for supporting slower

memories or peripherals, this must be done with the bus ready signals. If the bus ready

signal is not active at the sampling time, the bus cycle is lengthened by one T-state. The bus

ready signal is also sampled one T-state later for additional lengthening of the bus cycle.

Therefore the bus cycle length can be extended indefinitely by an integer number of T-states.

In 186/8086 mode, there are two signals for indicating the ready status of the bus:

® SREADY, which is a synchronous input with the demand of meeting setup and hold
times, and

® AREADY, which is an asynchronous input and the synchronization is done internally (see
data sheet).

Only one of the bus ready signals needs to be activated for indicating the rady status of the
bus. When the SAB 82257 detects ready active it terminates the bus cycle by deactivating the
status signals.

All other action necessary for termination of a bus cycle is started from the trailing edges of
the status signals.

4.1.2.2 Bus Arbitration

186 Mode

For the arbitration of the bus there are two signals:

® HOLD signal
® HLDA signal (HOLD acknowledge signal)

In local configurations these lines are directly connected to the processor. Whenever the SAB
82257 wants to perform one or more bus cycles it activates the HOLD signal. The processor
receives this and surrenders the local bus as soon as possible. The processor tristates its bus
and acknowledges the request with a high on the HLDA signal. After sensing an active HLDA
the SAB 82257 gets onto the bus after a minimum of 2 CLK cycles to perform the bus cycles.
After completion of the last bus cycle the SAB 82257 will surrender the local bus by floating
the bus and switching the HOLD signal low. The processor acknowledges this by a low on the
HLDA signal and takes the bus.

The SAB 82257 can be forced off the bus if HLDA is made inactive. After “losing HLDA" the
SAB 82257 surrenders the bus

@ after the currently running bus cycle, or
@ after the bus cycle(s) following the running bus cycle.

The second case is for supporting inseparable bus cycle, which are:

® word transfer on odd addresses, which is realized by two bus cycles where each transfer
is a byte transfer,
@ fetch of 24-bit address pointers out of memory.

63

Bus Operation

The SAB 82257 signals the surrendering of the bus by floating the bus and removing the
HOLD signal.

If requests for bus cycles are present the HOLD signal will go active after a delay of two T-
states.

Figure 27
HOLD-HLDA Sequence, 186 Mode

>

HOLD /

HLDA

>

2CLK Cycles Min.

SAB 82257 on Bus

Figure 28
Losing HLDA, 186 Mode

HOLD

TN/ “

2 CLK Cycles Min.

SAB 82257 on Bus —45

64

Bus Operation

8086 Mode
In 8086 mode, the bus arbitration is done via the
@ RQ/GT protocol.

The REQUEST/GRANT protocol implements a one-line communication dialog between the
SAB 82257 and the processor. Whenever the SAB 82257 wants to perform one or more bus
cycles it sends a request pulse lasting one CLK period via the RQ/GT signal to the processor.
The processor receives this and it will acknowledge this request also with a pulse on this line.
After sensing that grant pulse, the SAB 82257 controls the bus and uses it to perform bus
cycles. If no further bus cycles are necessary after bus cycle completion, the SAB 82257 will
surrender the local bus by sending a release pulse on the RQ/GT line. The processor receives
that signal and takes the bus.

Note
In 8086 mode, the HLDA pin has no function.

Figure 29
Request-Grant Sequence, 8086 Mode

Ra/GT __/ M “ _/_—
Qenf Q
Pl

Request Release

SAB 82257 on Bus

4.1.2.3 Reset Sequence

A reset signal on pin RESET (high level), forces the SAB 82257 into a well defined initial state.
This state is characterized as follows:
1. Upon activation of the RESET signal

— all channels are stopped

— all bus activities are stopped
— all tristate signals are in tristate and others in passive state.

2. After activation of the RESET signal
— above state is maintained, and in addition:
— some registers have defined values or defined control bits.
The contents of the registers are:

GMR: all bits are zero

GCR: undefined

GBR: all bits are zero

GDR: all bits are zero

GSR: — DMST bits for all channels: 0 (MSB) x (LSB)

— INT bit for all channels: 0
— S/R bit for all channels: 0

65

Bus Operation

CPRn: undefined
SPRn: undefined
DPRn: undefined
LPRn: undefined
BCRn: undefined
CCRn: undefined
CSRn: all bits are zero
DARnN: undefined
186 Mode

To continue operating the SAB 82257 in 186 mode after a reset sequence, it is necessary that
the AREADY pin and HLDA pin are low at the falling edge of RESET.

Figure 30
186 Mode after RESET

PP

RESET /- />\
T~ 16 CLK Cycles Min.
AREADY \ /
HLDA \ /

This operating mode is valid until the next activation of RESET. The RESET signal must be
activated for at least 16 CLK cycles.

2086 Mode

To continue operating the SAB 82257 in 8086 mode after a reset sequence, it is necessary
that the AREADY pin is low and HLDA pin is high at the falling edge of RESET.

This SAB 82257 operating mode is valid until the next activation of RESET. The RESET signal
must be activated for at least 16 CLK cycles.

66

Bus Operation

Figure 31
8086 Mode after RESET

RESET A A
16 CLK Cycles Min.
AREADY ‘\; /

) A
HLDA / \

4.2 Remote-Mode Bus Operations

4.2.1 Bus Cycles

The internal hardware of the SAB 82257 communicates with the CPU and the external
hardware via the bus using bus cycles.

Cycle Definitions

Three types of cycles are used to describe the SAB 82257 operation:

® CLK cycle

® processor cycle and T-state

® bus cycle

CLK Cycle

A CLK cycle is one period of the clock signal at the SAB 82257 CLK pin. In standard systems,
the frequency of CLK may be 16 MHz.

Processor Cycle and T-State

The internal SAB 82257 logic is driven from an internal clocking system. One period of this
internal clock is called a T-state. In standard systems, the frequency of the clocking system is
8 MHz.

In remote mode the clocking system uses the CLK frequency divided by two. Therefore only
the falling edge of CLK is important for the SAB 82257 timing and a T-state equals two CLK
periods.

67

Bus Operation

Figure 32
T-State Definition, Remote Mode

T-State

(LK
16 MHz

Bus Cycle

A bus cycle consists of an integer number of T-states. In remote mode a bus cycle has a
minimum length of 3 T-states but due to the pipelining of bus cycles, these bus cycles, may
come at a rate of one bus cycle for every two T-states. Therefore the maximum bus rate is 4
million bus cycles or 8 megabytes per second.

A bus cycle can be lengthened beyond the minimum by a delayed activation of the ready
signal (READY).

Bus Cycle Types

There are two basic types of bus cycles:

® active bus cycles
@ passive bus cycles

Active Bus Cycles

For data transfer between the SAB 82257 and memory or peripherals the SAB 82257
generates active bus cycles by activating the status signals S0 and S1. In remote mode the
SAB 82257 is the only master of local/resident bus. Therefore the SAB 82257 can start such
active bus cycles immediately, this means without any bus arbitration. For system bus
accesses a special arbitration control of the local bus is necessary to prevent a deadlock
situation (see section 4.2.2 Bus Arbitration).

An active bus cycle can be a read from or a write to system space or resident space.

A normal DMA transfer needs at least two bus cycles:

® the read from source and
@ the write to destination.

These two operations can be combined in a single bus cycle, for higher transfer rates (single-
cycle transfer). Source or destination is accessed by the SAB 82257 address and the
command, like a normal bus cycle, whereas the peripheral is selected by the DACKn signal.
The data does not flow through the SAB 82257 but directly from source to destination via the
data bus.

68

Bus Operation

Therefore even for a write cycle data pins must float like for a read cycle. Because the
SAB 82257 must control the bus cycle, the other bus pins function like during a normal bus
cycle.

Note
For correct operation on a buffered data bus the direction of the data transceiver must be
controlled by the DACKn signal.

Passive Bus Cycles

In remote mode, a passive bus cycle is an asynchronous access to an SAB 82257 register, i.e.
the processor drives signals CS and WR or RD. After receiving this access request the
SAB 82257 releases its local bus as soon as possible and signals this by activating the BREL
line. Now it monitors the RD and WR signals. Upon activation of one of these signals the
SAB 82257 latches the address signals A7 to A0, BHE signal and CS signal. After synchroniza-
tion of the asynchronous signals RD and WR, the SAB 82257 begins an asynchronous
passive bus cycle. The end of this bus cycle is defined by the trailing edge of the RD or WR
signal.

When a passive bus cycle is lengthened beyond the minimum time, a read from an
SAB 82257 register is made once and the result is latched to the output. Therefore, a change
of register contents during a passive bus cycle will not change the data read. By lengthening
a passive write bus cycle the transfer of the data on the pins to the selected SAB 82257
register is repeated until the end of the bus cycle. Therefore only the last data on the data
pins is stored in the register.

When the SAB 82257 is not in possession of the bus, all output signals except the following
are tristated:

® HOLD

® DACKO to DACK3

@® EODO to EOD3

® BREL

Bus Cycle Status

In remote mode, there are basically two signals to indicate the bus cycle type:

® 50 signal and

® S1 signal

The beginning of a bus cycle in indicated by SO or S1 or both going active. The termination of
a bus cycle is indicated by the bus ready signal (READY) going active.

Since in remote the SAB 82257 initiates all system bus accesses (and only these) with a
HOLD/HLDA sequence (see section 4.2.2 Bus Arbitration), the

® HOLD signal

can be used for distinction between the two address spaces (resident space and system
space).

Therefore the SAB 82257 can generate the following bus cycles by activating status signals
S0 and S71:

69

Bus Operation

HOLD ST S0 Active Bus Cycle Type

0 0 0 Not Valid

0 0 1 Read from Resident Space
0 1 0 Write into Resident Space
0 1 1 Not a Bus Cycle

1 0 0 Does Not Occur

1 0 1 Read from System Space

1 1 0 Write into System Space

1 1 1 Not a Bus Cycle

Bus High Enable (BHE)

The SAB 82257 works on a 16-bit bus as well as on an 8-bit bus. To control transfers of bytes
or words on such buses, there are two signals:

® bus high enable (BHE) and

@ the least significant address bit (A0).

A low on the BHE signal means that the data on the higher part of the bus (D15 to D8) is valid.
A low on the A0 signal means that the data on the lower part of the bus (D7 to DO0) is valid.
Therefore an even-addressed byte is transferred on the lower data bus byte and an odd-
addressed byte is transferred on the higher data bus byte. A full word can be transferred by
using both data bus bytes (D15 to D0O) and addressing the lower (even) byte of the word in
conjunction with an active BHE signal.

For transfers on an 8-bit physical bus both kinds of bytes, the even-addressed and the odd-
addressed byte, must be transferred over the lower data bus part. The transfer of an even-
addressed byte uses the same coding as a byte transfer on a 16-bit bus. The transfer on the
odd-addressed byte on the lower data bus half is indicated by BHE being high and A0 being
high.

A summary of this description is shown in the following table:

BHE A0 Valid Used for Notes
Data Bus Pins 16-Bit Bus 8-Bit Bus
0 0 D15 to DO Yes No Word Transfer
0 1 D15 to D8 Yes No Odd-Addressed
Byte on 16-Bit Bus
0 D7 to DO Yes Yes Even-Addressed Byte
1 D7 to DO No Yes Odd-Addressed Byte
:n 8-Bit Bus

The physical bus width is indicated by the SYSBUS bit and the RESBUS bit in the general
mode register (GMR) for SAB 82257 bus cycles. When an access to a register is made
(passive bus cycle) the SAB 82257 handles the data in the correct way by sensing the BHE
and A0 signal and acting according to the above table.

70

Bus Operation

Bus Ready

When a bus cycle must be lengthened beyond the minimum length for supporting slower
memories or peripherals, this must be done with the bus ready signal. If the bus ready signal
is not active at the sampling time, the bus cycle is lengthened by one T-state. The bus ready
signal is also sampled one T-state later for additional lengthening of the bus cycle. Therefore
the bus cycle length can be extended indefinitely by an integer number of T-states.

In remote mode the signal for indicating the ready status of the bus is:

® READY
which is a synchronous input with the demand of meeting setup and hold times specified
in the data sheet.
Any activation of the READY signal which does not meet the setup and hold times may cause
erroneous operation. Therefore, the SAB 82284 clock generator should be used guarantee-
ing the correct activation of READY signal.

An active bus ready signal occurring at the sampling time terminates the bus cycle.

4.2.2 Bus Arbitration

In remote mode the SAB 82257 is the only master of the local/resident bus. Therefore it can

start the local bus cycles immediately, this means without any bus arbitration by the HOLD/

HLDA sequence. For system bus accesses a special arbitration control of the local bus is

necessary to prevent a deadlock situation. A deadlock would arise if at the same time

@ the SAB 82257 waits to access the system bus thereby occupying the local bus, and

® the CPU waits to access the SAB 82257 (via the SAB 82257's local bus) thereby occupying
the system bus.

This problem can only be solved whenever, in the case of system bus accesses, the

SAB 82257 does not occupy the local bus until it has control of the system bus. Therefore the

SAB 82257 in remote mode initiates all system bus accesses (and only these) with a HOLD/

HLDA sequence.

HOLD/HLDA Sequence
For arbitration of the system bus there are two signals:

® HOLD signal
® HLDA signal (HOLD acknowledge signal)

In autonomous configurations, these lines are connected to the bus arbiter.

When the SAB 82257 is in remote mode, the HOLD/HLDA sequence is aefined as follows
1. For access to the resident bus, the SAB 82257 does not generate HOLD and starts the

access without receiving HLDA.

2. For all accesses to the system bus, the SAB 82257 generates HOLD before getting onto
the local bus. Only when it gets a HLDA it starts the bus cycle and occupies its local bus.
This ensures a deadlock-free arbitration of the local bus.

The CPU is only allowed to occupy the local bus if this bus is not accessed by the SAB 82257.
Therefore an arbitration of the local bus is necessary.

71

Bus Operation

CS/BREL Sequence

For the arbitration of the local bus there are two signals:

@® CS signal

® BREL signal (bus release signal).

Whenever the processor needs access to the local bus of the SAB 82257, it forces the cS
signal low. After receiving CS, the SAB 82257 surrenders the local bus

® immediately if no bus cycle is running, or

@ after the currently running bus cycle, or

@ after the bus cycle(s) following the running bus cycle.

The third case is for supporting inseparable bus cycles which are:

® word transfers on odd addresses, which are realized by two bus cycles where each
transfer is a byte,
® the fetch of 24-bit address pointers out of memory.

The SAB 82257 signals the surrendering of the bus by floating the bus and activating the
BREL signal. Now an access to the SAB 82257 registers or to the SAB 82257's resident bus
can be made. After that the CS signal must be set high. The SAB 82257 responds to this by
deactivating the BREL signal. Now the local bus is free for bus cycles of the SAB 82257.

Figure 33
CS-BREL Sequence, Remote Mode

S \\\ AN

A S 2CLK Cycles
BREL f
r —

SAB 82257 on Bus ll — SAB 82257 on Bus

72

Bus Operation

4.2.3 Reset Sequence
A reset signal on pin RESET (high level) forces the SAB 82257 into a well defined initial state.

This state is characterized as follows:

1. Upon activation of the RESET signal
— all channels are stopped
— all bus activities are stopped
— all tristate signals are in tristate and others in passive state.

2. After activation of the RESET signal
— above state is maintained, and in addition:
— some registers have defined values or defined control bits.

The contents of the registers are:

GMR:
GCR:
GBR:
GDR:
GSR:

CPRn:
SPRn:
DPRn:
LPRn:

BCRn:
CCRn:
CSRn:
DARnN:

all bits are zero

undefined

all bits are zero

all bits are zero

— DMST bits for all channels: 0 (MSB) x (LSB)
— INT bit for all channels: 0
— S/R bit for all channels: 0
undefined

undefined

undefined

undefined

undefined

undefined

all bits are zero

undefined

To continue operating the SAB 82257 in remote mode after a reset sequence, it is necessary
that the A23 pin is high at the falling edge of RESET and that the RM bit in the general mode
register (written first after RESET) is high.

Note

After RESET, the SAB 82257 is programmed to local mode (after RESET all bits of the GMR
are zero, i.e. the RM bit is low). An access to the SAB 82257 general mode register is possible
because the BREL pin is in tristate after RESET. Connecting a pullup resistor, this signal is
active for the external circuit and thus allows access to the SAB 82257. By this access the
SAB 82257 is programmed for remote mode, i.e. RM = 1, via the general mode register

(GMR).

73

Bus Operation

Figure 34
Remote Mode after RESET

£C
RESET / \
T s Cycles Min—
—
A23 / \

This SAB 82257 operating mode is valid until the next activation of RESET. The RESET signal
must be activated for at least 16 CLK cycles.

74

Communications Mechanism

Communications Mechanism

5 Communications Mechanism

5.1 CPU/SAB 82257 Communication

The CPU communicates with the SAB 82257 by depositing data in memory and into on-chip
registers. The CPU can access the SAB 82257's general registers and status registers and can
start up a channel by writing the proper command into the general command register. The
SAB 82257 will then read data from memory command blocks and set up itself accordingly.

Thus the communication between CPU and SAB 82257 is two-folded:

® communication by direct register access via the slave interface of the SAB 82257 and
@® communication via the control space in memory.

Figure 35
CPU/SAB 82257 Communication

On-Chip r Command Pointer I Fonaral Crmm
— J GeNSTay WO

in Memory

Command
Blocks

1. Communication by direct register access
2. Communication via the control space in memory

77

Communications Mechanism

5.1.1 Communication via Control Space in Memory

The normal communication between the CPU and the SAB 82257 is the data transfer via the
control space in memory (memory-based communication). This means that all necessary
information for a transfer with all its modifications, as for example, addresses of data source
and data destination, block length (byte count) or a list pointer for data chaining (instead of
source or destination pointer) is contained in a command block in memory accessible to the
CPU and the SAB 82257. The control space consists of all the organizational blocks like
command blocks, chain list etc.

The control space can lie

® for local mode: in the memory space as well as in the I/0 space, and
® for remote mode: either in the system space or in the resident space.

The particular control space can be dynamically changed with every start channel command.

5.1.2 Communication via Slave Interface

Although nearly all of the necessary communication between CPU and SAB 82257 is done
via memory-based data blocks, some direct accesses to SAB 82257 registers are necessary.
For example, during the initialization phase the general mode register must be written, or to
start a channel the command pointer register and the general command register must be
loaded. Also during the debugging phase it is of great benefit to have direct access to all of
the SAB 82257's internal registers. This direct access to registers (read/write registers) is
provided by the slave interface of the SAB 82257.

The slave interface consists of the following lines:

® SO, ST: status lines (inputs)
® RD, WR: control lines (inputs)
® A0 to A7: register addresses (inputs)
® DO to D15: data lines (inputs/outputs)

And for synchronous access in 186 mode:
® ADO to AD15: address/data lines (inputs/outputs).

The slave interface can only be accessed by the CPU, if the SAB 82257 does not occupy the
local bus. Therefore a local bus arbitration is necessary. This arbitration is

@ in local mode: performed by the CPU (HOLD/HLDA sequence) and

® in remote mode: done by the SAB 82257 itself (CS/BREL sequence).

The slave interface can be synchronous or asynchronous to the processor. The following
table presents a survey.

Access Address Information Possible in
Type Expected at Lines 286 Remote | 186/8086
L Mode Mode Mode
Synchronous A0 to A7 Yes No -
Synchronous ADO to AD7 - No Yes
Asynchronous A0 to A7 Yes Yes Yes

78

Communications Mechanism

Note

— For synchronous access, processor and SAB 82257 must be directly coupled and use the
same clock.

~ In an autonomous SAB 82257 subsystem (remote mode), only the asynchronous access
is possible because SAB 82257 has to release its local bus first to enable the register
access. On receiving an access request (activation of CS input), the SAB 82257 releases
his local bus as soon as possible and signals this by activating the BREL line. Now the
CPU can accomplish its access. (A detailed description of this arbitration is given in the
subsequent sections).

— All the lines the slave interface consists of are outputs if the SAB 82257 is an active bus
master.

5.2 SAB 82257/CPU Communication
The SAB 82257 communicates with the CPU by depositing data at the end of each DMA

transfer in the control space in memory and by using EOD lines as interrupt request lines to
the CPU. Thus the communication between SAB 82257 and CPU can also use two ways:

® Communication by using EOD lines as interrupt request lines to the CPU (hardware-
based communication)
® communication via the control space in memory (memory-based communication).

Figure 36
SAB 82257/CPU Communication

______________ Interrupt
. - Controller
in Memory ! SAB 82257 SAB 8259A

|

?

1 EODO IRO INT
Command EODY IR1 U
Blocks £003 R3 W
INTOUT/ R2

2

1. Communication via the control space in memory
2. Communication by using EOD lines as interrupt

|
|
|
|
i
| EOD2 \I)
|
|
|
|
| request lines to the CPU

79

Communications Mechanism

5.2.1 Memory-Based Communication

As described in section 5.1.1, control-space based communication means that all informa-
tion necessary for DMA transfers in contained in command blocks in memory accessible to
the SAB 82257 and the CPU.

Saving the status on termination the SAB 82257 writes the contents of the appropriate
channel status register (on-chip-register) into these command blocks at the end of each DMA
transfer examination by the CPU.

5.2.2 Hardware-Based Communication

The SAB 82257 has 4 EOD pins (one for each channel) for CPU interrupt and for communica-
tion with the system environment. Since the EOD pins are multiple function pins, their
application can be programmed. Thereby input and output functions have to be distin-
guished.

In this section, only the output functions of the EOD pins are discussed. Two basic functions
have to be distinguished:

® EOD function ("end of DMA”)

® INTOUT function (”interrupt output”).

EOD is a channel-specific active-low pulse signal lasting 2 T-states. It is always enabled by
software.

INTOUT can be hardware-generated (error detection) or enabled by software. The channel
which is generating INTOUT is indicated in the general status register (GSR) by the channel’s
INT (Interrupt) bit. INTOUT remains active until all INT bits in the general status register are
reset by the CPU with general commands (“clear interrupt”).

Figure 37
EOD/INTOUT Signals

2T

Internal CLK
£00n
(Output)
INTOUT T
(EOD2 Pin) '

Reset by Setting
1-Bit in GCR

80

Communications Mechanism

With INTOUT or EOD, the CPU (or other components of systems environment) is
synchronized to channel-specific events, as for example

® the channel is stopped because of a fatal error condition (INTOUT)

@ a block transfer is terminated by exceeded byte count (EOD)

@ a certain point in the channel program execution has been reached (EOD or INTOUT)
@ channel program execution is finished and channel is stopped (EOD or INTOUT).

The SAB 82257 provides two EOD and INTOUT signal options:

® The interrupts of channels are issued channel-specific as EOD signals.

@ The interrupts of channels are common for all channels as INTOUT signals on the EOD2
pin (EOD pin of channel 2), the other three EOD pins may be used as EOD output
described above.

Both options have advantages and disadvantages. System constraints decide which option
is the better one.

Figure 38
EOD/INTOUT Signal Options
E0DO |————= EODO
(ENCI) |~ E0D1 (ENCI) L EODI
GHR-/S" 1% 002 GMR_/"BIf 14 003
) |—— 003 - ———— INTOUT
Advantage: 1 dedicated EOD per channel Advantage: Common INTOUT signal for all channels
Disadvantage: No INTOUT signal Disadvantage: No EOD signal for channel 2

5.3 SAB 82257/Peripheral Communication

The SAB 82257/peripheral communication uses the DMA interface, which consists of the
following lines:

® DREQn ("DMA request”) lines,

® DACKn ("DMA acknowledge”) lines and

® bidirectional EODn ("end of DMA”) signals.

5.3.1 Communication via DREQn/DACKn Signals

These lines work as request and acknowledge lines to control synchronized DMA transfers as
known from conventional DMA controllers.

Before accessing a synchronizing device, the SAB 82257 waits for an activation of the DREQn
signal. After sensing an active DREQn, the SAB 82257 starts the data transfer as soon as
possible and acknowledges the request by activating the DACKn signal. A burst of data is
transferred in case of a continuous DMA request, as long as the DREQn signal is active.

81

Communications Mechanism

Figure 39

SAB 82257/Peripheral Communication

1. Communication via DREQn/DACKn signals
2. Communication via bidirectional EODn signals

Peripherals SAB 82257 Peripherals
_________ A {__ el

|
| 1. 2. |

OREQOL . e
=~ DACKD |
| |

DREQ1 [M
- DACK EoD
| |

DRE“L s ~) EoDZ/INTOUT
] I

DREQ3H] [
IlA DACK3 ! £0D3
| |
| |

Figure 40
DREQ/DACK Sequence

£
DY

N

DREQn

o
D

\QL_/

Data Transfer
l |

82

Communications Mechanism

DREQ/DACK Sequence
A DMA request initiates the execution of one or, in the case of continuous request, several
DMA cycles. To synchronize the data transfers there are two pins for each channel:

® DREQn
® DACKn
Before accessing a synchronizing device, the SAB 82257 waits for an activation of the DREQn
signal. During this wait phase the SAB 82257 can execute transfers on other channels or
release the bus for CPU actions. If the SAB 82257 receives an active signal on DREQn line, it
starts the first bus cycle for the data transfer as soon as possible. During this bus cycle the
SAB 82257 acknowledges the request by activating the DACKn signal. For a single data
transfer the DREQn signal must go inactive before the SAB 82257 can start a second bus
cycle to access the synchronizing device again. This means that the request must disappear
at the latest one T-state before the T-state in which the SAB 82257 begins to issue a new
status (TS) for the synchronizing device.

(n = number of the corresponding channel)

If the request is reset at least one and a half T-states before the last abort point (mentioned
above), the SAB 82257 can prepare a following bus cycle within this time and therefore can
perform the optional pipelining of bus cycles. Otherwise the SAB 82257 must delay the
following bus cycle by one or two T-states, which reduces the bus transfer rate.

Figure 41
DREQ/DACK Signals

2 CLK Cycles +

DREQ Setup Min.

DREQ /

~~45ns for
I Fastest Transfer
DACK

READY /
(Data Valid) \
DREQ must be inactive 2CLK cycles before READY active
to prevent next cycle

Summary

— For a single DMA transfer the DREQ signal should be released about 2 CLK cycles before
the end of the bus cycle, otherwise the next bus cycle will follow.

— For a burst-mode transfer, DREQ must be kept active during the burst and made inactive 2
CLK cycles before the end of the last bus cycle.

83

Communications Mechanism

5.3.2 Communication via Bidirectional EOD Lines
A special feature of SAB 82257 are the bidirectional EOD lines.

First they can be used as outputs (see section 5.2.2) to send out a pulse which interrupts the
CPU and/or signals to the peripheral a specific status as for example transfer aborted or end
of a block or send/receive next block, etc. In addition, the EOD output of channel 2 can be
used as a collective interrupt output (INTOUT) for all DMA channels while the other three
retain their normal function.

Secondly, as an input, the EOD lines can be used to receive an asynchronous external signal
to terminate a running DMA transfer. For this purpose the EOD lines are forced low by an
external circuitry.

An external termination is enabled by the SAB 82257 during the channel status "DMA in
progress” as indicated in the general status register (GSR).

Additionally, an external termination is processed only, if it is enabled with the EXT bitin the
type 1 channel command. An external termination is indicated in the channel status register
and can be sampled by conditional type 2 commands.

With these lines various configurations are possible depending on system resources and
requirements. Figures 42, 43 and 44 show some possible EOD/INTOUT configurations.

The configuration in figure 42 requires four interrupt request inputs, one for each channel.
None of the EOD pins is available as input then (see also figure 36).

The configuration in figure 43 requires only one interrupt request input and three EOD pins
are a available for peripheral interface.

The configuration in figure 44 is essentially a combination of the configurations in figure 42
and figure 43.

Figure 42
Channel-Specific EOD Outputs

| Interrupt
Peripherals | Controller

! SAB 82257 SAB 8259A

|
DREQ3 F000 |——— IR0

—T INT

OREQO | E0D1 IR1

| o N (€]
BACKS | £002 IR2
DACKO ﬁ“ 003 IR3

|

|

84

Communications Mechanism

(Figure 43
Common INTOUT
Interrupt
Peripherals Controller
| SAB 82257 SAB 8259A
DREQ3 ___ | »
Ext. —5'5@—1* EO00 INT
Term | — 4+~ ¥ INTOUT IR0 W PU
|
Sync.
Pulse DACK3 A1] £o03
DACKO /\'7_|
(Figure 44
Mixed EOD Configuration
Interrupt
Controller
h
Peripherals SAB 82257 SAB 8259A
I
|
DREQ3 j> o0 RO AT
DREQO |
Ext.
_ e
Term. ! EODT INTOUT IR1 WK Py
ACK <:’l:
DACK 0 ' IRz
f
Sync. |
Pulse I

85

Programming and Control

Programming and Control

6 Programming and Control

6.1 Register Model

The SAB 82257 employs a large number of programmable, user-accessible and logically
ordered registers to control its operation and maintain address pointers, status information,
etc.

These registers are classified as:

® General registers:
— A set of five registers used for all 4 channels.

® Channel registers:
— A set of 32 registers
— For each channel there is a separate, independent set of 8 channel registers.

All these user-visible registers can be read or loaded by the CPU. Some of the general
registers are loaded during initialization after a reset sequence (see section on Bus Arbitra-
tion) and others during the invocation of a channel. Also some of the channel registers are
programmed or read by the CPU but most of them are loaded by the SAB 82257 itself during
the setup routine after a channel start. Therefore most of the SAB 82257's registers are
accessed by the CPU only for test purposes. All registers can be accessed bytewise or
wordwise by the CPU.

Although most of the registers are loaded and saved from memory by the SAB 82257
automatically, it is of great benefit to have access to all of the internal registers, e.g. during
the debugging phase. This access, reading or writing, is done via the slave interface of the
SAB 82257. The slave interface can only be accessed by the CPU, if the SAB 82257 does not
occupy the local bus. Therefore, a local bus arbitration is necessary:

In local mode this arbitration is performed by the CPU (HOLD/HLDA sequence).
In remote mode this arbitration is done by the SAB 82257 itself (CS/BREL sequence).
The slave interface can be synchronous or asynchronous to the processor.

In the asynchronous case (RD, WR inputs) the internal register address (8-bit) is taken from
the low-order address pins (A7 to A0).

89

0 L

Register Set

Programming and Control
Figure 45

“ snjois puuoy) | ¥S) s
fquassy yva
_ puowwo) |3uuny) 4
s94Ag 0z sajkg 07 s344g 0z sakg 0z _ 4uno) ajkg ¥9
0H 221 14+ €ex _ 13juIog 4517 Hd1
Jajuiod uoljeulysag dda
_ J34U104 334N0S d4dS
_ J3jUtod puewwo) ddd
_ 0 €
(13uuey) Jad | 43S %) s43ys1bay auuey)
_ sJ94s163y |esausn
| o L
_ keag ¥ao
_ sing 3499
sajhg L puewwo) 49
_ 3pop UWO
| snyeys)
_ 0 St

J3}5163y digy-ug §35 13ySi637 15728 VS

90

Programming and Control

In case of synchronous slave interface (status signals inputs, not possible in remote mode),
the internal register address (8-bit) is taken

® in 286 mode from the low-order address pins (A7 to A0), and
® in 186/8086 mode from the low-order address/data pins (AD7 to ADO).

The following table gives a summary:

Modes of Operation Slave Interface
Asynchronous Synchronous
to the Processor. to the Processor.
Address information Address information
is expected at line is expected at line
Remote Mode A7 to A0 -
286 Mode A7 to AO A7 to A0
186/8086 Mode A7 to A0 AD7 to ADO

The next table gives a list of the accessible, user-visible registers and their internal addres-
ses. All the addresses are even (word) addresses, but the registers can also be accessed
bytewise.

Note that the 24-bit registers (CPR, SPR, DPR, LPR, BCR and CCR) have two addresses, one
for the low word and one for the high byte. The allocation of addresses is done on a
functional and on a channel number basis, e.g. bits 6 and 7 determine the number of the
channel.

Note
- Not defined locations are unused and reserved. They should, however, not be addressed

to prevent occurring of undefined effects.
— For accesses to SAB 82257 registers by the SAB 80286 CPU in “protected virtual address
mode”, refer to the note in section 3.2.1.5.

91

Programming and Control

Register Address Arrangement

Register Size Register Address (Bits 7 to 0)
Address Bits 7, 6 Address Bits
5to 0
00 1 10 1
(n=0) (n=1) (n=2) (n=3)
General
Register
GSR 16 GSR - - - 000100
GMR 16 GMR - - - 001000
GCR 8 GCR - - - 000000
GBR 8 GBR - - - 001010
GDR 8 GDR - - - 001100
Channel
Register
CPR, 24 CPRoL CPR,L CPR,L CPRsL 100000
CPRgH CPR;H CPR,H CPR3H 100010
SPR, 24 SPR,L SPR;,L SPR,L SPR;L 100100
SPR,H SPR;H SPR,H SPR;H 100110
DPR, 24 DPR,L DPR,L DPR,L DPR,L 101000
DPR,H DPR;H DPR,H DPR;H 101010
LPR, 24 LPRoL LPR,L LPR,L LPR,L 110000
LPRyH LPRH LPR,H LPR;H 110010
BCR, 24 BCR,L BCR;L BCR,L BCRs;L 111010
BCR,H BCR,H BCR,H BCR;H 111010
CCR, 16 CCR, CCR; CCR, CCR; 111100
DAR, 16 DAR, DAR; DAR, DAR; 010010
CSR, 8 CSR, CSR; CSR, CSR; 010000

General Registers

GSR
GMR
GCR
GBR
GDR

92

= General Status Register

= General Mode Register

= General Command Register
= General Burst Register

= General Delay Register

CPR
SPR
DPR
LPR

BCR
DAR
CSR
L

H

n

Channel Registers

= Command Pointer Register
= Source Pointer Register

= Destination Pointer Register
= List Pointer Register

= Byte Count Register

= Data Assembly Register

= Channel Status Register

= Low Word
= High Byte
= Channel Number

Programming and Control

Note

The register locations which are not specified are used for several internal working registers.
Therefore these locations should never be accessed and - what is even more important-
should never be written into.

6.2 General Control

6.2.1 Mode Selection

The SAB 82257 has been defined to work with all Siemens 16-bit family processors, i. e. SAB
80286, SAB 80186/188 and SAB 8086/88, without additional support and interface logic. As
the local buses of the above processors are different concerning signals, functions and
timings, the SAB 82257 has an adaptive bus interface to meet the different requirements of
these local buses.

As a result of this, a bus compatibility with identical timing is ensured for processors SAB
80286, SAB 80186/188 and SAB 8086/88. The compatibility with the 8-bit bus version of the
processors SAB 8088 and SAB 80188 is guaranteed by defining the physical bus width of the
SAB 82257 (per software) to 8 bits.

Note

In addition, the SAB 82257 can work in remote mode or standalone mode where it is not
coupled directly to a processor. In remote mode all bus timings are compatible with 286
mode.

Bus Timing Mode Selection
For the bus timing mode selection the SAB 82257 uses two pins:

® A23/AREADY and
® HLDA

On the trailing edge of the RESET signal the logic levels at these pins determine the type of
bus timing for SAB 82257 operation.

Pin A21 must be high during reset for proper operation! (For details see section “Bus
Operation”)

93

Programming and Control

Figure 46
Mode Selection (Survey)

SAB 82257
e Pin
A23/AREADY
on
RESET
Remote 286 8086 186
Mode Mode Mode Mode
I Bus Width
=8Bit
8088 188
Mode Mode

6.2.2 General Commands
To control the channel execution the following general commands are used:

1. START channel(s) with control space in system/memory space

This general command defines the location of the control space (here system/memory
space) and initiates the setup routine (see section 6.4.3). The execution of the command
is prioritized.

94

Programming and Control

START channel(s) with control space in resident / I/O space

This general command defines the location of the control space (here resident/1/O space)
and initiates the setup routine (see section 6.4.3). The execution of the command is
prioritized.

CONTINUE channel(s) operation

The CONTINUE command works directly with the internally stored register parameters
and it continues a previously stopped channel operation. The execution of the command
is prioritized.

STOP channel(s)

The STOP command forces the channel(s) into the status “stopped”, indicated by the

channel’s DMST bits in general status register (GSR), without any additional routine. The
command is executed immediately.

HALT/single-step channel(s)
The HALT command is a multiple function command:

- It forces the channel into the single-step and halt mode, indicated by the SSH bit in the
channel status register (CSR).

— If the channel is running, it will be halted after completion of the current command
block execution (either a type 1 or a type 2). The halted state is shown by the H-bit of
the CSR. Note, that the DMST bits in general status register (GSR) are not changed.

— If the channel is halted (or stopped), the HALT/single-step command starts the channel,
and the channel will again be halted after completion of the next command block
execution (type 1 or type 2).

The single-step and halt mode is finished by a START or CONTINUE command.

6.2.3 General Control Registers

The SAB 82257 contains the following general registers:

General Mode Register (GMR)
General Command Register (GCR)
General Burst Register (GBR)
General Delay Register (GDR)
General Status Register (GSR)

These general registers are used by the CPU for all the channels.

General Mode Register (GMR), 16-Bit Register

In the general mode register (GMR), the system wide parameters are specified:

physical bus widths of system (memory) bus and resident (I/0O) bus

Note:

System/resident corresponds with remote mode, memory / I/0O corresponds with local
mode.

remote or local (normal) mode;

which channels operate in single or two-cycle mode;
the relative priority of channels;

enable/disable of channel interrupts;

the function of EOD2 pin.

95

Programming and Control

This register should be the first to be programmed by the CPU after reset. If it is loaded

bytewise, the low byte should be programmed first.

Figure 47
General Mode Register Fields

Bit 15 1 13 9 7 3 2 1 0
EN MINT cyc 1/0 |Mem

0 ¢ PRI 0 | RM |(Res)|(Sys)

3 LZ 1 I 0 3 2 I 1 l 0 Bus | Bus

® MEMBUS/SYSBUS (bit 0)
Physical bus widths of memory (system) bus will be selected by bit 0:

MEMBUS Local Mode Remote Mode

SYSBUS

0 The physical data bus The physical data bus
width of memory bus width of system bus
is 8 bit. is 8 bit.

1 The physical data bus The physical data bus
width of memory bus width of system bus
is 16 bit. is 16 bit.

® IOBUS/RESBUS (bit 1)
Physical bus widths of I/0 (resident) bus will be selected by bit 1:

I0BUS Local Mode Remote Mode

RESBUS

0 The physical data bus The physical data bus
width of /0 bus width of resident bus
is 8 bit. is 8 bit.

1 The physical data bus The physical data bus
width of 1/0 bus width of resident bus
is 16 bit. is 16 bit.

96

Programming and Control

® RM Mode Select (bit 2)
The SAB 82257 has two basic modes of operation selected by bit 2:

RM = 0: Local mode, SAB 82257 is locally coupled with CPU.
RM = 1: Remote mode, SAB 82257 is autonomous and coupled with CPU via the system
bus.
® CYCn; n=0,1,2, 3 (bits 4,5,6,7)
One bit for each channel
Bits 4 to 7 define which channels operate in single or two-cycle mode:
CYCn = 0: Two-cycle DMA transfer mode of channel n.
CYCn = 1: Single-cycle transfer mode of channel n.

® PRI (bits 8, 9)
Bits 8, 9 are used to describe the priority of the channels:

ERI —Eﬁanﬁ‘ei Priorityﬂ .

0 0 All channels have fixed priority
(channel 0: highest priority,
channel 3: lowest priority).

1 All channels have rotating priority.

® MINTn; n =0, 1, 2, 3 (bits 10, 11, 12, 13)
One bit for each channel
Bits 10 to 13 are used to mask the interrupts from channels:
MINTn = 0: Enable channel n interrupt.
MINTn = 1: Disable (mask) channel n interrupt.

Note
For dynamic change of MINT bits, only the upper byte of the general mode register GMR
can be addressed.

® ENCI (bit 14)
Bit 14 defines, if channel interrupts (as masked with MINT bits) should be issued as “end
of DMA” (EOD) signals of the corresponding EOD line or as a common INTOUT signal on
the EOD2 line:
ENCI = 0: EOD2 pin = EOD2 (common interrupt not enabled)
ENCI = 1: EOD2 pin = INTOUT (common interrupt enabled)

General Command Register (GCR), 8-Bit Register

The general command register (GCR) is essentially used to start, stop and continue the
operations of any of the four channels of the SAB 82257 by commands. The START
command additonally defines control space assignment. The pending interrupt from any
channel is also cleared through the GCR. It is possible to address any combination of
channels simultaneously. A HALT/single-step command enables execution of commands in
a single-step mode, e.g. for debugging. The general command register (GCR) is directly
loaded by the CPU.

97

Programming and Control

Figure 48
General Command Register Fields

Bit 7 3 0

Channel
1 Command

3 2 1 0

® COMMAND (bits 0, 1, 2)
These three bits select the general commands for the channels of the SAB 82257:

COMMAND Channel Command
Bit 2 Bit 1 Bit 0
0 0 0 NOP (no operation).
0 0 1 CONTINUE Channel(s) Operation after

it has been stopped by the STOP
command (with existing register

parameters)

0 1 0 START Channel(s) — Command block at
system/memory space.

0 1 1 START Channel(s) — Command block at

resident/I/O space.

1 0 0 STOP Channel(s).

1 0 1 Not Valid

1 1 0 Not Valid

1 1 1 HALT/Single-Step Channel(s): Start
execution and stop after next command
block has been loaded.

Note

— A STOP command immediately stops the activity of the addressed channel(s).

— The HALT command stops activity after termination of the running channel command.
An additional HALT command leads to the execution of the next channel command
(type 1 or type 2) of the channel program (single step).

@ | INTERRUPT (bit 3)

|
| = 0: NOP (no operation)
| = 1: CLEAR pending interrupt(s) of channel(s).

98

Programming and Control

® Channeln; n =0, 1, 2, 3 (bits 4, 5, 6, 7)
This field determines to which channel(s) the given command refers:

Bit7 Bit6 Bit5 Bitd
0 0 0

Explanation

1 General Command for Channel 0
0 0 1 0 General Command for Channel 1
0 1 0 0 General Command for Channel 2
1 0 0 0 General Command for Channel 3

Note

— A START command to a channel which is running is regarded as NOP (no operation).

- It is possible to start/stop/continue more than one channel simultaneously, or to clear
interrupts of more than one channel at the same time.

General Burst Register (GBR), 8-Bit Register

The value in the general burst register (GBR) determines the maximum number of contigu-
ous bus cycles that can be requested by the SAB 82257. It must be loaded directly by the CPU
(not possible via command blocks).

Attention: If the GBR is programmed to zero, contiguous bus cycles are not limited (no burst
count).

The contents of the general burst register is loaded into a general burst counter (GBC) for the
actual counting.

Figure 49

7 0
GBR
Bus U
Cycles on —> Counter
System Bus

99

Programming and Control

For the operation of the burst counter the following rules apply:

Local Mode Remote Mode

— Whenever the SAB 82257 controls a bus — The General Burst Counter is
cycle the burst counter is decremented only during system
decremented by one, but not beyond bus accesses.
zero. Note

As resident bus accesses in remote
mode do not burden the system
bus, “bursts” are only relevant

for system bus cycles.

— If the burst counter reaches zero, — If the burst counter reaches
the SAB 82257 releases the bus. zero, the SAB 82257 releases the
bus.
Note

The execution of unseparable (locked) bus cycles prevents the release of the bus even if the
burst counter has reached zero!
Refer to the note for general delay register (GDR).

General Delay Register (GDR), 8-Bit Register

The contents of the general delay register (GDR) determines the minimum number of clock
cycles between burst accesses. It must be loaded directly by the CPU (not possible via
command blocks). If the GDR is programmed to zero, there is no minimum delay between
HOLD requests.

The contents of the general delay register is loaded into a general delay counter (GDC) for
the actual counting.

Figure 50

7 0
GDR
4 CLK Cycles (186 Mode) |
2 CLK Cycles (286 Mode) > Counter

100

Programming and Control

Figure 51
Bus Loading

a) Bus Loading
SAB 82258 cpu SAB 82258
on Bus on Bus on Bus
Burst b Burst ‘b’
| Delay-t' —=|
Bus Load i b
Oue to SABB82258 b+t
b) General Burst Register (GBR) -to Program ‘b’
7 0
Determines Max. Number of GBR
Contiguous Bus Cycles from
SAB 82258
Bus
Cycles on —F> Counter
It GBR=0, No Limit System Bus

c) General Delay Register (GDR) -to Program t’
7 0

GDR

Determines Min. Number of
Clock Cycles Between Burst Accesses
(default after reset=0,i e 4 T-states delay)

> Counter

2 CLK Cycles

101

Programming and Control

For the operation of the delay counter the following rules apply:

Local Mode

Remote Mode

— The general delay counter is
decremented by one, if the SAB 82257
does not perform bus accesses.

— In 286 mode, it is decremented every
second T-state and in 186 mode every
fourth T-state

— Whenever the delay counter is counted
to zero, both the burst counter and the
delay counter are reloaded from their
registers.

— The general delay counter is decrement-
ed if the SAB 82257 does not perform
system bus accesses.

— Itis also decremented during resident
bus accesses.

Note

As in remote mode resident bus accesses

do not burden the system bus, "delay” is

only relevant for system bus cycles.

— Whenever the delay counter reaches ze-
ro, both the burst counter and the delay
counter are reloaded from their regis-
ters.

Note

— Refer to the note for the general burst register (GBR).

— Bv programmina the burst and delay
By programming the burst and dela v regist

er it is possible to restrict the bus load

generated by the SAB 82257 on the CPU bus. The bus load is defined by the formula given
in figure 51. The factor b (burst) is programmed in the GBR, t (delay time) in the GDR (see
figure 51).

Since the SAB 82257 can also execute locked bus cycles, the maximum burst length

consists of b + 3 (8-bit bus) or b + 2 (16-bit bus) bus cycles.

General Status Register (GSR), 16-Bit Register

The general status register (GSR) provides the current status information for all four
channels. It shows whether the channels are running or stopped, which channels have
interrupts and where the control space for each channel lies.

102

Programming and Control

Figure 52

General Status Register Fields

Bit 15 12 8 L 3 2 1 0
Channel 3 Channel 2 Channel 1 Channel 0
S/IR[INT| DMST |[S/R|INT| ODMST [S/R I INT l DMST [S/R|INT| DMST

® DMST DMA status
(bits 0, 1; bits 4, 5; bits 8, 9; bits 12, 13)
— two bits per channel

These bits show the current status of the appropriate channei:

DMST
Bits Bits
1,5, 0, 4,
9,13 8,12
0 0
0 1
1 0
1 1
Note

Indicated Status

Four Channels (DMSTO0... DMST3)

Channel inactive (stopped), no DMA request pending.

Channel inactive (stopped), DMA request pending.
Channel in organizational processing (setup, chaining,
termination).

DMA transfer in progress.

The status "DMA transfer in progress” (i.e. DMST = 11) is indicated from beginning of
block transfer (after setup) until termination of transfer.

@ INT

(bit 2; bit 6; bit 10; bit 14)
— one bit for each channel

This bit indicates a pending interrupt from the appropriate channel.

INT = 0: No interrupt from this channel.

INT = 1: Interrupt pending from this channel (indicated on channel specific EOD pin, or
on EOD2 pin as INTOUT signal, if common interrupt is enabled in general mode
register GMR).

103

Programming and Control

® S/R SYSBUS/RESBUS (in remote mode)
MEMBUS/IOBUS (in local mode)
(bit 3; bit 7; bit 11; bit 15)
— one bit per channel
This bit indicates where the control space for the appropriate channel lies:

S/R Local Mode Remote Mode
Control space is on I/O bus. Control space is on resident bus.
1 Control space is on memory bus. Control space is on system bus.

6.3 Channel Control

All channels of the SAB 82257 can be operated with synchronized and nonsynchronized
transfers. Features like command chaining and data chaining are supported.

Data transfer, with all its modifications, is controlled with the aid of channel command
blocks. These contain the channel command word and all the initial parameters for data
transfer execution. The channel commands, that the SAB 82257 is to execute-are edited by
the CPU and stored in common memory (system memory). The CPU loads the start address
of the channel command block into the command pointer register of the respective channel
in the SAB 82257, in the same manner as if the CPU were updating a memory cell. In the
same way the SAB 82257 receives a channel start command (loading of the GCR). Initiation
of a channel operation in the SAB 82257 is thus very simple, as the CPU need not perform
anything else. The start command for a channel causes the SAB 82257 to read the channel
command block with all its parameters from memory, and to load them into the internal
channel registers.

The channel registers that can be loaded via the command blocks are:

® Source Pointer Register (SPR)
@ Destination Pointer Register (DPR)
@ List Pointer Register (LPR)
® Byte Count Register (BCR)
® Channel Command Register (CCR)

After examining the channel command for programming errors, the data block transfer is
executed if no errors are detected. After termination of the transfer, the reason for termina-
tion is indicated within a word in the channel command block (channel status).

While the channel is active (not stopped), the CPU should not access the channel’s control
space to prevent errors during operation.

6.3.1 Channel Commands

Survey
There are two basic types of channel commands:

— type 1 channel commands for data transfers and
— type 2 channel commands for command chaining control.

104

Programming and Control

The type 1 channel commands specify the actual data transfer operation, as for example the
data block transfer from a peripheral to memory. A type 1 channel command and its
parameters such as source pointer, destination pointer, byte count, constitute a type 1
channel command block (CCB). Type 1 commands are also called transfer channel com-
mands.

The type 2 channel commands specify the control operations of the channel, as for example
conditional jump, programmable interrupt or channel stop operations. A type 2 channel
command and its parameters such as signed 16-bit displacement or an absolute address for
a JUMP operation constitute a type 2 channel command block (CCB). Type 2 commands are
also called organizational channel commands. Comparatively complex operations are possi-
ble using the following chaining features of the SAB 82257:

® Data Chaining
Data Chaining is performed through the linking of different source blocks to form one
destination block, or through the scattering of one source block into different destination
blocks.

® Command Chaining
Command chaining is performed through the linking of several channel command
blocks. Normally command blocks are executed sequentially. Branching is possible using
type 2 commands.

® Channel Programs
Command chaining is performed automatically after completion of a channel command
(except a stop command). This means that a series of channel commands will execute
sequentially without CPU activity. Such a series of channel commands is called a channel
program. The type 2 channel commands allow the construction of complex powerful
channel programs apt for an intelligent response to a request.

A complete channel program consists of at least two channel command blocks (CCBs), one
with a type 1 command and one with a type 2 command (see figure 56). All channel
programs are stored in memory and prepared by the CPU.

Type 1 Channel Commands and Command Blocks

As shown in figure 54, a type 1 channel command block consists of the following elements in
order to accomplish a data transfer:

® a 16-bit type 1 channel command,

@ a 24-bit source pointer,

® a 24-bit destination pointer,

® a 24-bit byte count (block length) and

@ a 16-bit status word updated by the SAB 82257 after DMA operation.

All pointers represent 24-bit real physical addresses; not selector:offset!

105

Programming and Control

Figure 53
Simplest Channel Program

On-Chip

in Memory

Command Pointer

B1
Type 1 Command

+

Parameters

B2
Type 2 Command

+

Parameters

DMA Transfer

STOP Channel

Figure 54

Type 1 Channel Command Block

On-Chip Command Pointer
23 0
15 0
in Memory] Type 1 Command
X
3 Source Pointer
@
Increasing e -0-
Address g Destination Pointer
S -0-
Ei Byte Count
c
2 -0-
i

Channel Status

106

Programming and Control

The type 1 channel command defines the task to be performed by the channel:

@ For both source and destination:
— the logical bus width,
— memory space/l/O space in local mode or global space/local space in remote mode,
— how the pointers should be changed during transfer.

If data chaining is to be performed, if so then what type.

If EOD signal is to be generated at the end of transfer.

If EOD pin is to be used as an external terminate input.

Is the DMA transfer free-running or synchronized, if so then what type.

This standard command block is 16 bytes long and is needed for all DMA transfers.
The type 1 channel command is detailed in section 6.3.2 under Channel Command Register.

Note
Single-cycle transfers only use the source pointer field of the command block.

Type 2 Channel Commands and Command Blocks

As shown in figure 56, a type 2 channel command block contains

® a 16-bit type 2 channel command and

® a 32-bit parameter field.

The type 2 channel commands provide means to either branch to another command block or
stop the respective channel.

The type 2 jJump command (branching) either requires a 16-bit displacement (relative jump)
referring to the first byte of the currently executed command block or a 24-bit pointer
(absolute jump) to the desired next command block.

The type 2 stop command immediately stops the activity of a channel. The parameter field is
not used and normally contains zero.

Conditional Execution

As shown in figure 56, the type 2 channel command contains a 2-bit condition code
providing 2 termination conditions:

@ Bit 0: BC byte count exceeded

@ Bit 1: ET external termination of block transfer

Setting the respective bit to one enables execution of the type 2 command if the indicated
condition occurs. Several conditions are ORed.

A condition is recognized as true if the associated termination status bit (within the CSR) is
active. The flag | (see type 2 command) allows to invert the status bits (CSR) before they are

evaluated.

107

Programming and Control

Figure 55
Type 1 Command Fields

Type 1 (DMA) Channel Command

15 B 12 1N 0 9 87 4

2 1 0

Destination
SYN 0 [EXTJEOD] SC JLLC| L

~

Source

wiB]INC Joec /10

wiB]INC Joec i

—= List Chaining

= Linked List
Chaining

‘——————= Source Chaining
0 -Destination
1-Source

Synchronization

00- Type 2 Command
01-Source Sync
10-Destination Sync

11-No Sync. (Free-Running)

N

Enable Logical Bus Width
ToD 0.8 Bit
1.6 Bit Space
0-1/0
Enable 1-Memory
External
Terminate

00-No INC/DEC
01-DEC
10-INC
11-No Pointer

108

Programming and Control

Unconditional Execution

If both condition bits are set to one, the command is executed anyway. If both condition bits
are set to zero, the command is never executed, which means a NOP command.

With the new command pointer the next channel command is fetched (command chaining).
If the indicated condition code for conditional commands is not fulfilled, the command
pointer is incremented by 6 bytes and the next channel command (type 1 or type 2) is
fetched. Thus a NOP is executed.

The type 2 channel command is detailed in section 6.3.2 under Type 2 Channel Command
Register Fields.

The type 2 commands also allow activation of a program-controlled interrupt (INTOUT or/
and EOD signal) during execution of the command.

This is controlled by two flags in the command, the IT flag (bit 10) and the ED flag (bit 11). In
contrast to the type 1 command EOD (synchronous with last data transfer), the type 2
command EOD is an asynchronous EOD. If the ED or IT flag is set, signal generation is always
unconditional, independent of the condition code.

6.3.2 Channel Registers
Each of the four SAB 82257 channels has the following channel registers:

® Command Pointer Register (CPR)
® Source Pointer Register (SPR)
® Destination Pointer Register (DPR)
@ List Pointer Register (LPR)
® Byte Count Register (BCR)
® Channel Command Register (CCR)
® Channel Status Register (CSR)
@® Data Assembly Register (DAR)

All these channel registers, except the command pointer register (CPR) and the channel
status register (CSR), are loaded by the SAB 82257 from the channel command blocks
located in memory.

Command Pointer Register (CPR), 24-Bit Register

Bit 23 0

Command Pointer

The command pointer register (CPR) contains the physical address of the command block in
memory. It must be loaded by the CPU before starting the channel.

109

L 34y S4ig 3P0) UOLIPUO) |l UBYM JWNI JBUOI{IPUOIUN x

34N10SQY dWNM , BUOHIPUO) - L]
SALIRIZY dWN(»1BUOI}IpUO) - OL
dOl1S 1euotyipuoy - L0

dOLS 10uoiipuodun -00

‘|Av 3poy 4§

Programming and Control

Figure 56

Structure of Type 2 Channel Commands

_, =
| -0- A =
asedwo) aJ0j3q pUDWWOY dOLS - o- ®
S48 snyeys |
= 13uuey) JI3AT| puewwo) z adA| w m
o
uolDUIWIR] — | a
JeuJasx3 “ ao3 “ _ ~0- I* o
A Bieiaueg = | dWNr 34njosqy - sauiog 41g-72 B
| | n
pu3 _ puewwo) 7 3dk F
junoy | , FLLRNEIY] W , 2t
kg | 3jeJ3uan |
| | !
um— 13 dWNIr 2ANe| Yy - Juawadeydsig 41g-91
d ——n
oy © 0|10 0 oo ofufoa|wndolo o PUewwoy 2 50K V Fr—
0 € " L 6 0L il €l SL 0 st
JeWI0J puBwwo) g odA[¢ J €
3uiog puewwo) dig-ug

110

Programming and Control

Source Pointer Register (SPR), 24-Bit Register

Bit 23 0

Source Pointer

The source pointer register (SPR) contains the physical address of the source

® in local mode: memory space or I/0 space

® in remote mode: system space or resident space

in a DMA transfer. In single-cycle transfer mode (i.e. CYCn = 1 in the general mode register),
the source pointer register (SPR) contains the sole address pointer (which can also be the
address of destination).

Destination Pointer Register (DPR), 24-Bit Register

Bit 23 0

Destination Pointer

The destination pointer register (DPR) contains the physical address of the destination

® in local mode: memory space or I/O space
® in remote mode: system space or resident space

in a DMA transfer. In single-cycle transfer mode the DPR is not used.

List Pointer Register (LPR), 24-Bit Register

Bit 23 0

Chain List Pointer

The list pointer register (LPR) is used for data chaining operation. It points to the actual list
element.

Byte Count Register (BCR), 24-Bit Register

Bit 23 0

Byte Count

The byte count register (BCR) contains the byte count for the DMA transfer.

111

Programming and Control

Channel Command Register (CCR), 16-Bit Register

The channel command register (CCR) specifies

® the type of DMA transfer when it is loaded from the type 1 channel command field of a
type 1 channel command block or

@ the type of internal operation when it is loaded from the type 2 channel command field of
a type 2 channel command block.

Channel Command Register (CCR) for Type 1 Channel Commands

In the channel command register for type 1 channel commands, the type of DMA transfer is
specified:

® For both source and destination:

— the logical bus width,

— memory space / /O space in local mode or global space/local space in remote mode,
— how the pointers should be changed during transfer.

If data chaining is to be performed, and of which type.

If EOD signal is to be generated at the end of transfer.

If EOD pin is to be used as an external terminate input.

Is the DMA transfer free-running or synchronized, if so then what type.

Type 1 Channel Command Register Fields

Figure 57
Bit 15 3 122 1N 10 9 8 7 & 3 2 1 0
Destination Source
CCR: SYN 0 |EXT|EOD| SC |LLC | LC
W/BI INC I DEC IM/IO W/BI INCI DEC IHIIO

The explanation for M/IO bit, DEC bit, INC bit and W/B bit is valid for source (bit 0 to bit 3) and
destination (bit 4 to bit 7).

® M/10 (bit 0, bit 4)
Distinction between memory/system and I/O / resident space addresses:

M/10 Local Mode Remote Mode

0 The source/destination pointer resides The pointer resides in the
in the 1/0 space. local space (resident bus).

1 The source/destination pointer resides The pointer resides in the
in the memory space. global space (system bus).

112

Programming and Control

@ DEC (bit 1, bit 5)
INC (bit 2, bit 6)
These bits define how the pointers should be changed during DMA transfer:

INC DEC Explanation

Bit 2 Bit 1

Bit6 Bitb

0 0 Do not increment or decrement source/destination pointer after each
transfer.

0 1 Decrement source/destination pointer by one or two (depends on W/B
bit) after each transfer.

1 0 Increment source/destination pointer by one or two (depends on W/B
bit) after each transfer.

1 1 No source/destination pointer needed at all.

Note

In the case of no destination the SAB 82257 itself (assembly register) is the destination.
In the case of no source pointer the source is a byte or word constant and located in
the command block within the source pointer field.

® W/B Logical Bus Width (bit 3, bit 7)
Logical bus width of source/destination will be selected by bit 3 and bit 7:
W/B = 0: Source/destination data transferred in bytes
W/B = 1: Source/destination data transferred in words

Note
If the physical bus width is 8 bit, W/B = 1 is ignored.

® LC List Chaining (bit 8)
Channel command register bit 8 enables list chaining:
LC = 0: No list chaining
LC = 1: List chaining enabled

Note

The source pointer (if source chaining is indicated by SC bit = 1 in the CCR) or the
destination pointer (if destination chaining is indicated by SC bit = 0 in the CCR) points at
the chain list.

® LLC Linked List Chaining (bit 9)
Channel command register bit 9 enables linked list chaining:

LLC = 0: No linked list chaining
LLC = 1: Linked list chaining enabled

113

Programming and Control

Note
Only one of the bits LC and LLC must be set, i.e.

LLC LC Explanation
Bit 9 Bit 8
0 0 No Chaining
0 1 List Chaining
1 0 Linked List Chaining
1 1 Not Allowed
® SC (bit 10)

Bit 10 indicates whether destination or source data chaining is to be performed.

SC = 0: Destination data
chaining if LC or
LLC is set.

SC = 1: Source data
chaining if LC or
LLC is set.

A summary of the description of LC bit, LLC bit and SC bit is shown in the following table:

SC LLC LC Explanation

Bit 10 Bit 9 Bit 8

0 0 0 No Chaining

0 0 1 List Chaining of the Destination Data

0 1 0 Linked List Chaining of the Destination Data
0 1 1 Not Allowed

1 0 0 No Chaining

1 0 1 List Chaining of the Source Data

1 1 0 Linked List Chaining of the Source Data

1 1 1 Not Allowed

® EOD End of DMA Transfer (bit 11)
Channel command register bit 11 indicates if the EOD signal is to be generated at the end
of a DMA transfer:
EOD = 0: End of DMA signal from SAB 82257 to peripheral device (or CPU) disabled
EOD = 1: End of DMA signal from SAB 82257 to peripheral device (or CPU) enabled
Note
The channel generates a 2-clock EOD strobe signal at byte count termination of block
transfer. Transmission is synchronous with last data transfer to synchronizing device or —
in case of no synchronization — with last destination cycle. In case of data chaining EOD is
generated by each byte-count-exceeded condition. EOD signals initiated by type 1
commands are called synchronous EOD signals.

114

Programming and Control

® EXT External Termination (bit 12)
Bit 12 indicates if the EOD pin is used as an external terminate input:
EXT = 0: External termination not enabled
EXT = 1: External termination enabled

Note

The peripheral device uses the channel’s EOD line (strobe pulse) for external termination
signal if bit 12 is set.

® SYN (bits 14, 15)

SYN Explanation
Bit 15 Bit 14
0 0 Type 2 Channel Command
0 1 Source Synchronization of Data
Transfer
1 0 Destination Synchronization of Data
Transfer

1

1

Free-Running of DMA
Transfer, i.e. No Synchronization

Channel Command Register (CCR) for Type 2 Channel Commands

In the channel command register for type 2 channel commands the type of internal operation

such as

— conditional jump operation
— channel stop operation
— programmable interrupt

is specified. The register is loaded from the type 2 command field of a command block.

Type 2 Channel Command Register Fields

Figure 58

Bit 15

13 n 109 7 5 3 2 1 0

Cond. Code

OpCode [ED|IT | O 0 0 0 0 1 0 0

ET | BC

115

Programming and Control

® Condition Code CC (bits 0, 1)
These two bits define the DMA termination condition code for a conditional operation.

BC (bit 0)

BC = 0: No function
BC = 1: Byte count exceeded

ET (bit 1)
ET = 0: No function L
ET = 1: External termination (not programmed EOD)

Note

— The bits BC and ET correspond to the bits in the channel status register (CSR).

— If the CC field equals 0 0 (and | bit = 0) for a jump command, it is a NOP.

— If more than one of these bits are set, then the condition is an OR operation of those
bits.

— If the CC field equals 1 1 (and | bit = 0), the command becomes an unconditional
command.

— An explicit unconditional stop command ignores the CC field.

@ | Invert Channel Status Bits before Compare (bit 4)

I = 0: No invert
| = 1: Status register bits are first complemented and then compared with the CC bits.

@ IT Interrupt (bit 10)
Bit 10 indicates whether an INTOUT signal on the EOD2 pin or a channel specific EOD
signal should be activated with the execution of the command:
IT = 0: No interrupt
IT = 1: Send interrupt; this is
— a static signal (INTOUT) on EOD2 pin if
1. not masked with MINT bit in GMR and
2. ENCI bit in GMR is equal 1, else
— a strobe pulse on channel-specific EOD pin.

Note
— In all cases the interrupt is indicated in the general status register (GSR).
— In all cases the interrupt has to be cleared by the CPU with a general command.

® ED End of DMA (bit 11)
Bit 11 indicates if a channel-specific EOD signal should be activated with the execution of
the command:
ED = 0: No EOD
ED = 1: Send EOD of channel n (strobe signal)

Note
This is an asynchronous EOD signal in contrast to the EOD signal generated during the
last data transfer of a type 1 transfer command.

116

Programming and Control

® Operation Code (bits 12, 13)
These two bits select the command for the channel operations:

Op Code Command
Bit 13 Bit 12
0 0 Unconditional Stop Channel Operation.
0 1 Conditional Stop Channel Operation.
1 0 Conditional Jump Relative.
1 1 Conditional Jump Direct.
Note
— A NOP command is realized with the condition code all zero for a conditional com-
mand.

— An unconditional command is realized with the condition code all ones.
— Refer to note for bits BC and ET.

Channel Status Register (CSR), 8-Bit Register

The channel status register (CSR) reflects the status of the appropriate channel. The least
significant bits (0 and 1) contain the termination condition (can be used for conditional
execution of type 2 commands), and the most significant half byte (bit 4 to bit 7) is for error,
busy status and halted state. After execution of a type 1 channel command block the CSR is
written back into the command block for CPU access. The channel status register (CSR) can
also be read directly by the CPU.

Figure 59
Channel Status Register Fields

o
wn
&~
w
~
-
o

Bit

Term.

FE | H |[SSH| Reserved

Reserved | =

ET | BC

® DMA Termination (bits 0, 1)
These two bits of the channel status register (CSR) reflect the way in which the DMA

transfer was terminated:

BC Byte Count (bit 0)

BC = 0: No function

BC = 1: Byte count exceeded

ET External Termination (bit 1)

ET = 0: No function

ET = 1: External termination (not programmed EOD)

117

Programming and Control

@ SSH Single-Step Halt Mode (bit 4)
The single-step halt mode bit indicates the operations of the channel in single-step mode,
where after the execution of each CCB the channel comes to a halt:

SSH = 0: No function
SSH = 1: Channel operating in SSH mode

® H Halted (bit 5)
Bit 5 indicates whether the channel is in halted state:

H = 0: No function
H = 1: Channel in halted state

® FE Fatal Error (bit 6)
FE bit indicates the occurrence of a fatal error during the execution of the current CCB:

FE = 0: No function
FE = 1: Fatal error has occurred

Data Assembly Register (DAR), 16-Bit Register

Bit 156 0

Assembly

The data assembly register (DAR) is used as a buffer for data assembly and disassembly
operations during data transfer with unequal bus widths.

6.3.3 Command Chaining

The term “command chaining” describes the automatic linking of several channel command
blocks to a command chain called a channel program (see section 6).

Normally command blocks are executed sequentially like a program. After completion of
one channel command block, the SAB 82257 starts — without CPU intervention — processing
the next block automatically by incrementing the command pointer by the length of the
command block. It is thus possible to execute a sequence of different types of DMAs
autonomously. Chaining will be performed until a STOP command is detected (type 2
command) or the CPU stops the channel directly.

Using type 2 (jump) commands, conditional branching is possible. This allows continuation
of channel programs at arbitrary locations.

The shortest and simplest DMA implementation therefore consists of a type 1 command
block followed by a "STOP” (type 2) command block.

A simple auto-reload DMA can be implemented with a DMA command block followed by an
unconditional JUMP to the top of the DMA command block.

More complex structures are also easily implemented (see figures 60 and 61).

118

Programming and Control

Figure 60
Command Chaining and Branching

(4]
Type 1 Command

+

—

Parameters
B2 B3
Type 2 Command Type 1 Command
+* +
JUMP Parameters

if Condition Met

«B7 B & / (Bs
Type 1 Command Type 2 Command Type 1 Command
+ +
Parameters JuMp Parameters
B8 Be6
Type 2 Command Type 2 Command
STOP STOP

The initiation of the command chaining is done by the termination processing belonging to
the last data transfer execution (except of asynchronous external termination all termination
processing belongs to the last data transfer execution). Thus command chaining and this
means channel program execution is directly influenced by the last data transfer.

The channel command in process is pointed to by the command pointer in CPR. Therefore, if
for any reason the channel is stopped or waiting, the CPR points to the last executed channel
command. Only if termination processing is executed, the pointer is incremented (by the
length of the current command block) and the next channel command is fetched and loaded
into CCR. This can be a type 1 channel command or a type 2 channel command.

119

Programming and Con

trol

Figure 61

¢) Conditional DMA Operation

Complexities in Command Chaining
DMA DMA
STOP JUMP
a) Simplest DMA Operation b) Auto- Reload DMA
OMA
#1
— “Condition” =
JUMP if"Con- External Terminate
dition" Met or
Byte Count End
DMA
DMA #3
#2
STOP
STOP

120

Programming and Control

Type 1 Channel Command Chaining

A type 1 channel command is indicated by the two highest order bits of the fetched
command word (SYN bits in CCR).

After erasing the channel status register CSRn the processing of type 1 command chaining
depends on the mode of synchronization (SYN bits in CCR):

— In case of internal synchronization the channel starts data transfer immediately after the
setup routine.

— Incase of external synchronization the channel is waiting for requests after completion of
the setup routine.

Type 2 Channel Command Chaining

A type 2 channel command is fetched during command chaining, if the two highest order
bits of fetched word (SYN bits in CCR) are both zeros. In that case, the whole command is
immediately fetched and executed and — if channel is not stopped — the next channel
command (type 1 or 2) is chained.

Possible type 2 commands:

— relative jump
— absolute jump

These jumps are conditional commands. Therefore jump commands have two ways of
execution:

— Condition is true:
The next channel command is fetched with the new command pointer.
— Condition is not fulfilled:
The command pointer is incremented by 6 and the next channel command is fetched

In both cases the following channel command may again be a conditional command.
This implies that multiple evaluation of termination status is possible.

— unconditional stop

— conditional stop with valid condition (channel is only stopped if condition is true,
otherwise CPR is incremented by 6 and next channel command is fetched).

— conditional stop without condition (= NOP).

If the channel is stopped, the command pointer is not incremented thus pointing to the last
executed channel command. Only the channel’'s DMST bits in GSR are changed from
“organizational processing” to “channel inactive” (with or without request pending). Chan-
nel program execution is finished.

All type 2 channel commands have an ED bit and an IT bit. If ED = 1, an EOD pulse lasting 2
internal clock cycles (T-states) is issued on the channel’s EOD line after command execution.
If IT = 1 and if the channel’s interrupt is enabled in GMR, the INTOUT function is activated
and the channel’s interrupt pending bit INT in GSR is set.

121

Programming and Control

6.4 Initialization

6.4.1 Initial State

To bring the SAB 82257 to a defined state the RESET signal has to be activated.

Upon activation of the RESET signal:

1. All channels are disabled by clearing the DMST bits in GSR.

2. All activities on the bus are stopped.

3. All tristate signals are tristated and other output signals are passive.

After the RESET signal becomes inactive, the SAB 82257 continues to be in the state defined
above. Additionally the SAB 82257 is in a defined state characterized by:

4a Itis in 186 mode, if the A23 pin is low at the falling edge of RESET, otherwise it is in 286
mode.

4b When in 186 mode, it is in request/grant mode if the HLDA pin is high at the falling edge
of RESET, otherwise it is in HOLD/HLDA mode.

5. Some registers have defined values or defined control bits.

Registers: GBR: zero value
GDR: zero value
Bits: GMR: all bits zero, i.e. even RM bit = 0

GSR: all bits zero
CSRn: all bits zero

Figure 62
Operation Mode after RESET

RESET / \
D 286 Mode
A23/ T
AREADY "

o _
186 Mode ™ _ R0/GT Mode

<6
>y

HLDA
(Only in 186 Mode) <0 -

HOLD/HLDA Mode*

122

Programming and Control

All other registers and bits are undefined.

Before any data transfer can be performed by a channel after the RESET signal has occurred

— the SAB 82257 first has to be initialized (programmed by the CPU) and

— after a START command the SAB 82257 has to set up the new channel state (setup
routine).

6.4.2 Initialization and Channel Invoking

Figure 63 illustrates how the CPU should initialize the SAB 82257 to ensure correct operation.
The first register which must be loaded after RESET is the general mode register (GMR). The
main configuration information required by the SAB 82257 for overall processing and
remaining unchanged during an installation (e.g. the physical bus width) is indicated in the
lower byte of the GMR. Thus the main system configuration information can be loaded first,
regardless of the fact whether the CPU has an 8-bit or 16-bit data path or the physical bus
width is 8 or 16 bit.

The physical bus width of CPU/SAB 82257 communication is indicated by the SYSBUS/
MEMBUS bit of GMR's configuration byte (both in local mode and in remote mode). Thus all
register write and read operations (SAB 82257 is slave) are executed

— bytewise, if SYSBUS = 0, on lower half of data bus (D7 to D0O) and

— wordwise, if SYSBUS = 1, on D15 to DO.

Note
If SYSBUS — 1, byte transfers are also possible. The bytes are then transferred on that half of
data bus which is addressed by the least significant bit of the register address.

Internally the SAB 82257 only uses the bus signals BHE (bus high enable) and A0 to detect
the effective transfer width (byte or word) of CPU/SAB 82257 communication (see chapter
"Bus Operation”).

After the general mode register (GMR), the
— general burst register (GBR) or the

— general delay register (GDR)

should be programmed by the CPU.

Since the initial state of these registers is zero, the GBR and GDR need only be programmed
if the zero entries should be changed.

nd channel

Before a channel will be invoked, additionally the control space in memory and ¢
cribed in the

or
registers within the SAB 82257 have to be prepared and programmed, as des

following section.

123

Programming and Control

Figure 63
Initialization Sequence

SAB 82257 Activity Registers Involved CPU Activity
| |
| |
| |
Wait for |]
RESET ——= Commands : GMR : Load GMR
| |
| |
! GBR I Load GBR
| |
| |
I |
: GOR 1| Load GOR
! |
| | {
: | Channel
| : Initialization
| | |
| | !
! | Load GCR
Read GCR I GCR ! with the
= : START Command
| |
| |
| |

Preparation for Channel Start

@ If data chaining enabled: chaining list or linked lists in control space
® Load CPR with start address of channel program

124

Programming and Control

Figure 64
Channel Initialization

|
I
Registers Invoived : CPU Activities

—1
|
|
I
|
|
|
|
l
l
I
|
I
|
|
|
|
|
|
|
|
|

-
|
[
[
|
:
|
I
I
|

Prepare Channel
Control Block

I

|
|
|
|
|
|
Il
|
: s
|
|
No Data Yes !
Chaining |
2 |
|
|
!
Prepare | ini
‘ : | Chaining
Channug% Lists : Lists
Linked Lists |
~ 1 \ Linked
_\r Lists

(PR |=—+———————— Load CPR

l

As shown in figure 63, in all cases of channel start the last CPU operation is to write the
general command into GCR. Then the start will be processed by the SAB 82257 according to
the requested channel’s priority. If more than one channel should be started at once, at first
the one with highest priority is processed. If the addressed channel is already active, the start
command is ignored. If | = 1 in the general command, the pending interrupt bit(s) of the
indicated channel(s) will be cleared in GSR.

125

Programming and Control

START Command Execution

The START command for a channel initiates the setup routine — executed as described in
section 6.4.3 — and, in addition, it defines the location of the control space (memory or 1/0
space in local mode, system or resident space in remote mode).

6.4.3 Setup Routine

The setup routine causes the SAB 82257 to read the channel command block with all its
parameters from memory into the internal channel registers. It includes the following

operations:
1. Reset channel status register (CSR).
2. Load channel command into CCR with address out of CPR. Bus width is physical

SYSBUS/MEMBUS width (system or memory control space), or RESBUS/IOBUS width in

case of resident or I/O control space.

If channel command is a type 2 command: continue with type 2 command execution and

command chaining.

If channel command is a type 1 command: check on fatal command error; if no error:

Read source pointer, 24 bit, and load it into SPR: concurrently, the low-order 16-bit word

of source pointer is also loaded into DAR (used as literal or constant instead of source

data, if source INC/DEC is 1 1 in CCR);

Additionally the source pointer is loaded as list pointer into LPR, if source data chaining is

enabled (SC = 1 and LC or LLC is set).

Read destination pointer, 24 bit, and load it into DPR;

Additionally the destination pointer is loaded as list pointer into LPR, if destination data

chaining is enabled (SC = 0 and LC or LLC is set; not allowed for single-cycle transfer).

If no data chaining: read byte count, 24 bit, and load it into BCR.

If data chaining is enabled:

— Read byte count, 16 bit, with address out of LPR and load it into BCR; clear high byte
of BCR.

— Read data pointer, 24 bit, out of chaining list and load it into SPR in case of source data
chaining (SC = 1) or into DPR in case of destination data chaining (SC = 0).

— Iflist chaining enabled (LC flag): increment LPR by 6; if linked list chaining is enabled
(LLC flag): read new list pointer, 24 bit, and store it in LPR.

Change general status of channel (DMST bits in GSR) from "organizational processing”

into "DMA transfer in progress”.

Now the channel setup is finished and all transfer parameters are accessible in internal
registers.

The setup routine is executed after receiving the general start command.

Note
After receiving the general commands

STOP channel(s)
CONTINUE channel(s) operation
HALT/single-step channel(s)

only a change of general and specific channel status is performed, i.e. no channel setup
routine is executed.

126

Programming and Control

6.5 Reflections on Compatibility

When designing software to operate the SAB 82257 in a system environment, you might
want to provide compatibility with future DMA controllers. This can be achieved by observ-
ing a few principles while writing your own software.

Special attention should be paid to the 24-bit quantities (pointer, byte count) used with the
SAB 82257. 24-bit quantities within command blocks are placed into two 16-bit words with
the most significant byte (MSbyte) left unused. 24-bit registers will normally be accessed as
16-bit word and consecutive byte.

For reasons of compatibility with future DMA controllers it is recommended to treat the
MSbytes as zeros.

This means that within command blocks these MSbytes should be set to zero or discarded
(e.g. status block), respectively. While writing or reading SAB 82257 registers, only word
accesses should be used. Hereby the MSbytes again should be zero (write) or discarded
(read), respectively.

By observing these principles you will be able to run user software written for the SAB 82257
also on future DMA controllers (e.g. 32-bit controllers) without any changes. This applies to
control programs executed by the CPU as well as to channel programs executed by the
SAB 82257.

Note

— Software designed uniquely for the SAB 82257, of course, is not subject to the above
rules. No compatibility, however, will be provided in this case.
The SAB 82257 itself will not bother if the MSbytes contain something else than zeros.
Information contained in the MSbytes, however, will be lost or invalid.

— For compatibility with the advanced DMA controller SAB 82258 please refer to section 2.5
“Upgradability”.

127

DMA Transfer

DMA Transfer

7 DMA Transfer

7.1 General

After initialization and execution of the setup routine all transfer parameters are accessible in
internal registers. The SAB 82257 is now prepared for executing the data transfer.

Data is transferred from a source to a destination and can be controlled concurrently by four
DMA channels. The source and destination may be any location in memory space or in I/O
space. The SAB 82257 operations apply to both, memory components and I/O devices.

Individual transfer cycles (e.g. the movement of a byte or a word) may be synchronized by a
signal (DMA request) from the source or from the destination. In synchronized mode, the
channel waits for the synchronizing signal before starting the next transfer cycle. The
transfer may also be unsynchronized (free-running), in which case the channel begins the
next transfer cycle immediately upon completion of the previous one.

A transfer can be terminated on several programmer-specified conditions. The channel can
stop the transfer when a specified number (up to 16 Mbytes without chaining) of bytes has
been transferred. An external device may stop a transfer by signalling on the channel’s
terminate pin (EOD signal).

Basically the following 2 DMA transfer types have to be distinguished:

® two-cycle transfer on DMA channel,
® single-cycle transfer on DMA channel,

Two-Cycle Transfer on DMA Channel

The two-cycle DMA transfer is the preferred transfer mode of the SAB 82257. The two cycles
consist of a fetch cycle from source location and a store cycle to destination location. The
DMA channel can transfer up to 4 Mbytes/s in this mode and has a lot of flexible options.
Since the SAB 82257 operations apply to both, memory components and I/O devices, data
can be transferred from memory to memory, memory to I/O device, I/O device to memory
and I/0 device to I/0 device, whereby memory as well as I/O space are addressed by 24-bit
pointers.

In remote mode the pointers can be either system space or resident space pointers. The
pointer to each space can be auto-incremented, auto-decremented or remain unchanged
during transfer.

Transfer can be synchronized by source or destination or not synchronized at all (free-
running). There is an automatic assembly/disassembly of data, to support transfer between
an 8-bit space and a 16-bit space.

The data chaining feature allows to gather two or more source blocks and transfer them to
one destination or to scatter one source block to several destination locations. The maximum
block size for normal transfers (unchained) is 16 Mbyte (BCR is a 24-bit register).

During data chaining blocks of up to 64 Kbyte maximum can be chained together. Termina-

tion of block transfer can be controlled internally (byte count expired) or externally (EOD
signal).

131

DMA Transfer

Special modifications of two-cycle data transfers are:

® DMA transfer with no destination pointer (read operation), i.e. data byte/word is read
into the DAR register of the SAB 82257 but is not output.

@® DMA transfer with no source pointer (write operation), i.e. data byte/word is output from
the DAR register of the SAB 82257 (loaded during the setup routine).

Characteristics:

— data flows through the SAB 82257
— dissimilar bus width support

— memory-to-memory transfers

— transfer rate up to 4 Mbytes/s

Figure 65
Two-Cycle Transfer

SAB 82257
110
I Peripheral
A
()
Memory AN
-0 ®
@
110
Peripheral
-0

@ DMA Transfer with No Source Pointer
@ Memory-to-Memory Transfer

@ Memory-to-1/0 and 1/0-to-Memory Transfer
@ DMA Transfer with No Destination Pointer
(5) 10-to-110 Transfer

132

DMA Transfer

Single-Cycle Transfer on DMA Channel

The single-cycle DMA transfer supports very fast peripherals at more than 4 Mbytes/s
transfer rate. The maximum speed in this mode is 8 Mbytes/s. Data is directly transferred
from source to destination, i.e. the data flows past (not through) the DMA controller and
cannot be assembled or disassembled on-the-fly. Therefore dissimilar bus width between
source and destination is not supported. Single-cycle transfer is always performed with
external synchronization by DMA request (DREQ) from an I/O device. The maximum transfer
speed is reached only with a continuous DMA request.

While the requesting device is serviced (and addressed) via the acknowledge signal DACK,
the pointer to the other location (memory or I/0) is issued and its bus cycle is executed by the
SAB 82257. Itis the I/0 device’s duty, due to pin limitation, to know whether its cycle is a read
cycle or a write cycle and to generate its command signal out of the bus command signals.
Since DACK covers the whole command signal — even if it is generated by the bus controller
— all related timing conditions of peripherals are fulfilled.

Figure 66
Single-Cycle Transfer

110
SAB 82257 Peripheral
Memory 110
Peripheral
-—a—1)

@Memory—l’o-llo and 1/0-to-Memory Transfer
(2) 110-to-110 Transter

133

DMA Transfer

Single-cycle transfers can be performed on the system bus also in remote mode, if the
peripheral is local and the memory in system space.

This is very advantageous for a high transfer rate between local space and system space,
since the system bus arbitration has to be performed only once for every continuous DMA
request, e.g. transfer from a local FIFO memory buffer to system memory. During a two-cycle
data transfer, a change of system bus arbitration would be necessary for each bus cycle.

On single-cycle transfer channels, data chaining and command chaining is supported, too.
Termination of single-cycle transfer can be controlled internally (byte counter expired) or
externally (EOD signal).

Characteristics:

— data flows past the SAB 82257

— external synchronization by DREQ signal
— transfer rate up to 8 Mbytes/s

7.2 Synchronization of Data Transfer

7.2.1 Survey

Two general modes of synchronization for DMA transfer on the SAB 82257 have to be
distinguished:
® External synchronization
via the DMA request pins (DREQ 0 to 3).
® Internal synchronization
i.e. free-running data transfer.

The preferred mode of synchronization is the external synchronization of DMA transfers.
The external DMA request may be issued from source (source synchronization) or from
destination (destination synchronization) device. It can initiate a single or a two-cycle DMA
transfer. The external synchronization allows to control input/output operations in the cycle
of the peripheral device and to occupy the bus only at that time when the peripheral is really
able to receive or to transmit data.

The second general mode of synchronization is the internal synchronization of DMA
transfers (free-running). This means that a DMA transfer is performed without any external
synchronization. This is advantageous for memory-to-memory transfers (two-cycle trans-
fers). Free-running data transfer is also performed during a continuous DMA request (one or
two cycles.

7.2.2 Associated Control Register Bits

The following control register bits are used in order to control synchronization of DMA
transfers:

® General Mode Register Bits (GMR)

— CYCn (bits 4, 5, 6, 7): Two-cycle/single-cycle transfer mode of channel n.
® Channel Command Register Bits (CCR)
— SYN (bits 14, 15): Source/destination synchronization or free-running.

134

DMA Transfer

7.2.3 External Synchronization via DREQ Signals

A DMA request initiates the execution of one or — in case of continuous request — more DMA
cycles (see timing diagrams in chapter "Device Specifications”). Depending of the channel’s
CYC bit in GMR one or more

® single-cycle transfer or

® two-cycle transfers

are performed.

In case of single-cycle DMA transfer the following assumption is made:
requesting device: = |/O device.

Therefore the SYN bits in the channel command register (CCR) are only needed to identify
the requesting device — source or destination. Thus the other location — destination or source
— has to be addressed during data transfer. This addressing is done with a pointer out of the
source pointer location in the command block.

During single-cycle transfer, no assembly or disassembly of bytes can be performed. A DMA
request, therefore, always initiates the whole byte or word transfer from source to destina-
tion.

If the DREQ signal is not cleared after acknowledge with a DACK signal, more than one DMA
transfer will be performed (see section 5.3.1 “Communication via DREQn/DACKn Signals”).
This results in the highest possible transfer rate for the SAB 82257.

In the case of two-cycle DMA transfer no assumption is made concerning the requesting
device.

Since in two-cycle transfer mode the assembly/disassembly functicn is enabled, the SYN bits

are needed to control the real number of bus cycles to be performed with one DMA request.

An example shall illustrate this:

Example

It has been assumed that source transfer width is 16 bit (W) and destination width is 8 bit (B).

— In the case of source synchronization three bus cycles will be executed with one DREQ
(1W, 2B).

— In the case of destination synchronization only one (1B = first byte) or two (1B = second
byte, 1W) data cycles will be executed with one DREQ. Note that in this case the SAB 82257
performs prefetching of source data.

Note

— As described in the subsequent sections, control of the real number of bus cycles during
“two-cycle transfer” is rather complicated, because this also depends on such parameters
as address (odd/even), modification (increment/decrement), byte count, etc.

— A continuous DMA request causes free-running DMA transfers until the DREQ signal is
cleared or a termination condition occurs.

7.2.4 Internal Synchronization

The original control of the free-running transfer mode is done internally and is selected via
the SYN bits in CCRn. In this case, the DMA channel works in NOSYNC mode. After finishing
the setup routine, the channel starts the data transfer by itself. Thereby the channel controls

135

DMA Transfer

the data transfer according to the assembly/disassembly rules, but without any external
synchronization. (The READY signal may be used as a kind of external synchronization).
Thus the channel performs bus transfers and runs with maximum speed — unless interrupted
by a higher priority request — until a termination condition occurs.

As described in preceding sections, the start of the NOSYNC mode can also be triggered by
external synchronization:

Continuous DREQ

In this case the free-running data transfer will be performed until reset of DREQ or until a
termination condition occurs. In this case — and only here — also free-running or single cycle
transfers are possible.

7.3 Masking of Transfer Requests

A data transfer is executed only if — after the synchronization to the internal clocking system
— the corresponding transfer request is not masked by its associated control register bits.

Associated Control Register Bits

The following control register bits are used for masking transfer requests:

® General Status Register (GSR)
DMST bits: Channel stopped or in organizationai processing, or DMA transfer in prog-
ress.

Transfer requests on DMA channels are masked with the DMST bits in GSR. Internal or
external transfer requests are only accepted if the channel's status is "DMA transfer in
progress”.

Requests are masked as long as the channel is stopped or in organizational processing.

Since a stop command from the CPU directly effects the channel’s DMST bits, the data

transfer will also be stopped immediately. On the active channel, the DMST code "in
organizational processing” expresses all channel states where data transfer is not allowed.

Example
After a channel start during setup routine, or after termination during command chaining,
requests are masked.

An unmasked transfer request can also be delayed by the priority control logic and by bus
arbitration.

7.4 Bus Request Control

Before any data transfer is executed, the bus must be allocated to the SAB 82257 otherwise a
bus arbitration with a HOLD/HLDA sequence has to be performed.
Only exception: resident bus accesses in remote mode.

136

DMA Transfer

7.4.1 Associated Control Register Bits

The bus request (HOLD) is controlled by the following parameters:
® General Mode Register (GMR)
— RM (bit 2): SAB 82257 operates in local/remote mode.
® General Burst Register (GBR)
® General Delay Register (GDR)
® General Status Register (GSR)
— S/Rn bits: SYS/RES for bus requests to control space, used in remote mode.
® Channel Command Register (CCR)
— M/I0 (bit 0, bit 4): For source and destination: in remote mode used for system/resident
space indication.

7.4.2 Bus Request Control in Local Mode

In local mode an unmasked transfer request immediately activates or renews the bus request
signal HOLD. Unless HLDA is already active, the data transfer has to wait until the CPU sends
the acknowledge signal. In case of continous transfer requests, either internal (free-running)
or external, also the bus request is a continuous request even if the transfer is interrupted by
a higher priority channel request.

A new HOLD request or a continuous HOLD request may also be delayed or interrupted by
programmed general delay and general burst. The GBR and GDR are enabled if they are
programmed with values not equal to zero. In that case, a continuous bus request is limited
to the programmed number of contiguous bus cycles. After such a transfer interrupt the
general delay counter loaded from GDR becomes active.

This additional delay has to be considered with respect to the maximum latency time of
highest priority DMA requests (see section 6.2.3 in chapter "Programming and Control”).

7.4.3 Bus Request Control in Remote Mode

In remote mode bus requests are generated only for system bus accesses. For these

accesses the SAB 82257 generates HOLD before getting onto the local bus. Only when it gets

a HLDA it starts the bus cycle and occupies its local bus.

System bus accesses are indicated by the M/IO bits in CCR for source and destination.

For maximum system bus transfer rate a continuous system bus request is necessary. The

SAB 82257 in remote mode can only accomplish a continuous system bus request (HOLD) if

either

@ single-cycle transfer with pointer in system space is used with continuous DMA request,
or

@ two-cycle transfer is specified and both, source and destination, are located in the system
space, combined with continuous external or internal DMA request.

In both cases, holding of system bus can be limited and controlled by programming GBR and
GDR.

The GBR and GDR are enabled if they are programmed with values not equal to zero. In that
case, a continuous bus request is limited to the programmed number of contiguous bus
cycles. After such a transfer limitation the general delay counter loaded from GDR becomes
active.

137

DMA Transfer

In remote mode resident bus accesses are not arbitrated. Thus a minimum latency time can
be achieved after a new DMA request. In all other cases, DMA requests need at first a bus
arbitration. The data transfer can be accomplished according to the synchronization and
assembly/disassembly principles.

7.5 Data Transfer

There are two data transfer types which can be performed by each of the four high-speed

channels:

® Single-Cycle Transfer
In single-cycle mode the bytes or words (16 bit) are transferred directly from data source
to data destination in a single bus cycle per transfer. This mode allows a total data rate of
up to 8 Mbytes/s, and that as single-channel data rate or as cumulative data rate of
multiple channels (simultaneous operation of several channels in single-cycle mode).
Thus the advantage here is that of speed.

® Two-Cycle Transfer
In two-cycle mode the source data is always stored in the SAB 82257 before being sent
out to the destination. A special feature of two-cycle transfer is automatic assembly and
disassembly of data in bytes and words, meaning that data can be read as one 16-bit
word and written as 2 bytes, or vice versa. This is often desirable when using 8-bit wide
peripherals in a 16-bit system. In two-cycle transfer mode, data may also be transferred
from one memory region to another — which is impossible with single-cycle transfer.

7.5.1 Two-Cycle Transfer

Associated Transfer Parameters and Control Register Bits

The following registers and control register bits are used in order to control data transfer
cycles for two-cycles transfer mode:
® General Mode Register (GMR)

— MEMBUS/SYSBUS (bit 0): Physical system/memory bus width.

— IOBUS/RESBUS (bit 1): Physical resident / I/0O bus width.

— RM (bit 2): Local/remote mode.

— CYCn (bits 4, 5, 6, 7): 0, i.e. two-cycle DMA transfer mode of channel n.

® Channel Command Register (CCR)

— M/IO (bit 0, bit 4): For source and destination: Data in /O / memory space for
local mode. Data in resident/system space for remote mode.
— INC (bit 2, bit 6): For source and destination:
DEC (bit 1, bit 5): No modification, increment, decrement or don't use pointer.
— W/B (bit 3, bit 7): For source and destination: Logical bus width byte/word.

® Source Pointer Register (SPR)
@ Destination Pointer Register (DPR)
® Byte Count Register (BCR)

138

DMA Transfer

Transfer Width

Logical Bus Width

The logical bus width W/B (bit 3 and bit 7 in CCR) determines the quantity — bytes or words —

which should be transferred of the bus during a data bus cycle.

Thereby

® the logical bus width of source (bit 3) determines the source quantity (not data type)
which should be transferred from source location to SAB 82257 and

® the logical bus width of destination (bit 7) defines the quantity to be transferred from
SAB 82257 to destination.

This independent indication of logical bus width for source and destination implies that the
destination quantity need not be the same as the source quantity.

Physical Bus Width

® In local mode
the physical bus width is determined by the GMR bits MEMBUS (bit 0) and IOBUS (bit 2).
Thereby
— the MEMBUS bit defines the physical bus width of the memory bus, and
— the IOBUS bit that of the I/O bus.

® In remote mode
the physical bus width is determined by the GMR bits SYSBUS (bit 0) and RESBUS (bit 1).
Thereby
— the SYSBUS bit defines the physical bus width of the system (and processor) bus, and
— the RESBUS bit that of the resident bus.

Before any data bus cycle is executed, the logical bus width of the addressed location is
compared with the related physical bus width. The following table describes the effective
transfer width and the data bus pins used, in relationship to physical and logical bus width.

Table: Effective Transfer Width

Physical Logical Bus Width

Bus Width 8 Bits 16 Bits
Effective Data Pins Effective Data Pins
Transfer Width Transfer Width

8 Bits 8-Bit D7 to DO 8-Bit D7 to DO

Byte-Transfer Byte Transfer

16 Bits 8-Bit 16-Bit D15 to DO
Byte Transfer Word Transfer
If AO=0 D7 to DO
If AO =1 D15 to D8

Note

— In the above table the indicated word transfer only defines the quantity which should be
transferred. The real quantity which is transferred by a data bus cycle depends additionally
on other influences, such as address (odd/even), byte count and the direction of modifica-
tion. All this results in the data cycle control.

139

DMA Transfer

— Using a logical bus width of 8 bit on a 16-bit physical bus, bytes are transferred
alternatively via the lower (even address) or the higher (odd address) half of the bus
depending on the LSB of the address (A0) (See also chapter 4, section "Bus High Enable”).

Data Cycle Control

Dissimilar effective transfer widths and special transfer conditions influence the real quantity
transferred during data cycles within two-cycle transfers. Thereby the data width of source
cycles and destination cycles is controlled by the assembly register operations. The
SAB 82257 has one 16-bit data assembly register (DAR) per channel. All source data are
loaded into the DAR, manipulated in some cases (e.g. swap) and then transferred to the
destination.
For data cycle control, two transfer modes have to be distinguished:
® Forward Transfer Mode
Data transfer mode with incrementation of source pointer and/or destination pointer
(both pointers may be steady).
® Reverse Transfer Mode
Data transfer mode with decrementation of source pointer and/or destination pointer
(one pointer may be steady).

Explanation

The following symbols will be used within this section:
B = Byte transfer

B,B = Two successive byte transfers
W = True word transfer

B/B = Artificial word transfer

— = Normal transfer

- = Transfer with possible swap
S = Source pointer

D = Destination pointer

X+ = Incrementation of X pointer
X= = X pointer remains unchanged
X— = Decrementation of X pointer

Transfer Acceleration (align):

Transfer acceleration is executed if the pointer to a 16-bit location contains an odd address
and is incremented. In this case, a single byte is transferred which results in an even address
in the pointer mentioned. Now word transfers are possible with increasing throughput (=
acceleration). The double-framed fields of the table mark the cases where transfer accelera-
tion is possible.

Exception
If the other pointer also points to a 16-bit location and holds an even address, no acceleration
is performed because it would be pointless in this case.

Swapping of DAR Bytes
During reverse transfer the bytes of the DAR may be swapped logically to maintain the order
of data during transfer. Swaps are performed in the indicated cases (—x—).

140

DMA Transfer

Artificial Word Transfer

An artificial word transfer is regarded as word transfer but realized as two successive byte
transfers. Pointer modification, however, is performed as with word transfers. Contrary to
two-byte transfers (B,B) the byte transfers of an artificial word transfer are unseparable bus
cycles and are initiated by a single DMA request. The B,B transfer requires two DMA
requests, if it is synchronized.

This table surveys the possible modes of data cycle control.

Table
Channel Transfer Operation Survey

S—=0D § —= 8 8 —= 16 16 —= 8 16 — 16
E—E B—=8 BB > W W ¢ BB W—W
E—0 B—=8 BB >¢= B/B W ¢~ BB w — B/B

00— B—=8 BB > W B/IB —=W
I vr'mss
0—=0 B—=8 BB > B/B B/B ->= BB B/8 —= B/B

i -

Forward Transfer Mode

The forward transfer mode is the standard mode of data transfer. Forward transfers are data
transfers with incrementation of source and destination pointer (S+ and D+). They aiso
include constellations where one pointer is incremented (S+ or D+) and the other remains
unchanged (D= or S=). If both pointers are not modified (S= and D=) also a forward
direction of data transfer will be assumed. Thus, the forward transfers include data transfer
with pointer modifications such as

S+ — D+

S+ — S=

S=—D+

S=— D=

141

DMA Transfer

® The table on page 141 shows that in case of odd addresses (with pointer incrementation)
combined with 16-bit transfer width at first only a byte transfer is executed. After this byte
transfer and incrementation of pointers, even addresses allow whole 16 bit transfers.

Example
Source and destination transfer width are 16 bit, both pointers have odd addresses and are

incremented.

Figure 67

S16+0dd D16 +0dd

First Transfer: B B

After initial byte transfer both pointers are modified by 1 (byte transfer). Now both pointers
have even addresses and the following transfers are word transfers (after each word transfer
both pointers are modified by 2). The last transfer is a byte transfer, if the original byte count
was even (word transfer with original byte count odd).

Figure 68
S16+Even | D16 +Even
Second Transfer: w W l
Note

This kind of transfer acceleration cannot be used if S16 and/or D16 should remain unchanged
(S16 = and/or D16=).

During each transfer the byte count register (BCR) is decremented according to whether a
byte (decrementation by 1) or word (decrementation by 2) is transferred. Thus the BCR
always indicates the number of bytes that still are to be transferred. Word transfers or
corresponding B/B transfers are only performed, if the byte count register contains at least

142

DMA Transfer

the number 2. If the byte count is one, only a byte transfer is executed before termination or

data chaining. This is also valid during prefetching in case of destination synchronization.

® If the transfer which is 16 bit, B/B transfers are chained together (unseparable).

@ |[f the transfer width is 8 bit, B/B transfers can be chained but this depends on synchroniza-
tion control.

Reverse Transfer Mode

Reverse transfers are data transfers with decremented of source and/or destination pointer
(S— or D—). They also include constellations where one pointer is decremented (S— or D)
and the other remains unchanged (D= or S=). Thus, the reverse transfers include data
transfers with pointer modification such as

S- —D-
S- - D=
S= ->D-

For reverse data transfers, it is assumed that the operation "write forward” followed by a
“read reverse” must not change the original byte string. Therefore, a swap of bytes has to be
executed if source and destination have dissimilar transfer width.

The following example illustrates the necessity of a swap.

The example in figure 69 shows only the logical swap of bytes, which is necessary in
comparison with forward transfers. Physically it may also be possible that no swap has to be
performed under the following condition: If read reverse of source bytes is started with an
odd source address and physical source bus width is 16 bit.

Figure 69
Example of Reverse Transfer
Write Forward
Source Words Destination Bytes
S16+ |—=| D8+ AB €] — | B|A]|]D]|C
Read Reverse
Destination Words Source Bytes
D16- |-=—] S8- BA DC - BlA|D]C
without
- swap —
AB €] - | B | A|D]|C
with swap

143

DMA Transfer

During each transfer, the byte count register (BCR) is decremented according to whether a
byte or word is transferred. Thus the BCR always indicates the number of bytes still to be
transferred. If the byte count is one, only a byte transfer is executed before termination or
data chaining.

Note

— B/B transfers on 16-bit transfer width:
Address is incremented (not decremented) after first byte transfer (usually word transfer
with odd addresses). Thus in case of decrementation the initial word address does not also
address the highest byte.

— Contrary to incrementation:
If the byte count is 1 after transfer on 16-bit bus, then the pointer is decremented by 1 for
the next (byte) transfer. Nevertheless, swap is performed in cases of —e

— If no modification has to be performed on pointer to 16-bit location and byte count is 1
after transfer on 16-bit bus, then the pointer, nevertheless, is incremented by 1 for the next
(byte) transfer. Contrary to forward transfers this is the only restriction to be considered on
a 16-bit bus without address modification.

Standardized Handling

Basically all two modes of data cycle control are covered by some standardized handling:

@ Assembly/disassembly of bytes supports especially transfers on buses with dissimilar
effective transfer widths, where 16-bit locations are addressed by even addresses.

@ Transfer acceleration is supported only in case of odd address to 16-bit locations if the
related pointer is incremented (S16+ of D16+). No transfer acceleration is supported in
case of odd address to 16-bit locations if odd pointers are decremented (S16— or D16-)
or if odd pointers are not modified (S16= or D16=).

® The entry direction of source bytes into the data assembly register DAR is in all cases
controlled by the source pointer modification direction:

— If the source pointer is really or implicitly (forward transfer) incremented, the bytes are
loaded alternately into the low and high-byte position of the DAR, beginning with low
byte.

— If the source pointer is really or implicitly (reverse transfer) decremented and effective
transfer width is 8 bit, bytes are loaded beginning with the high-byte position of DAR,
which results in swapping of the DAR bytes.

@ The output of bytes is controlled by the destination pointer modification direction for all

B/B data cycles to destination:

— If the destination pointer is really or implicitly incremented, bytes are alternately
fetched from DAR byte positions, beginning with low byte.

— If the destination pointer is really or implicitly decremented and effective transfer width
is 8 bit, B/B transfers begin always with the high byte of DAR.

No swap is performed during 16-bit source or destination data cycles.

B/B and W transfers are performed only if the byte count contains at least number 2.

When the byte count contains 1 only a byte transfer is executed before chaining or

termination.

144

DMA Transfer

Note

The described data cycle control in this section is not valid

- in single-cycle transfer mode and

— in cases where no source or destination pointer is needed at all (reverse byte swap is
executed).

Addressing

Source and destination are addressed by 24-bit real addresses, the source pointer and the

destination pointer. Logical addressing is not supported. Addresses are always byte addres-

ses. Thus a real word transfer requires an even address.

® In local mode
addresses may point into memory or into the I/O space. This can be selected for source
and destination separately with the two M/IO bits in type 1 channel command. The M/IO
signal accompanies all issued addresses. Since in local mode M/IO is not used for internal
control and /0 data cycles do not differ fromm memory data cycles, the /0 space may also
be mapped into memory space and vice versa.

@ In remote mode
addresses may point to the global or the local space, i.e. the SAB 82257 has to distinguish
between system bus accesses and resident bus accesses. This is controlled by the M/IO
parameter in the type 1 channel command for source and destination separately.
Therefore, mapping has to be performed for /O accesses on system bus and memory
accesses on resident bus.

Pointer Modification

Source and destination data pointer are

® incremented or

® decremented or

@® not modified at all

according to the values of INC/DEC bits in type 1 channel command. All modification of
pointer registers is done after the corresponding data bus cycle.

In cases of incrementation and decrementation, the pointer registers are modified by 1 after
a byte transfer and by 2 after a word transfer.

In case of no modification at all, the pointer remains unchanged even if the address has to be
incremented for a second byte transfer on a 16-bit bus with odd address.

Only exception
In case of odd byte count and reverse transfer on a 16-bit bus the pointer is incremented by 1

for the last hvte trancfer
ror the last byte transier.

Note

— In 186 mode of the SAB 82257 only 20-bit addresses are available and issued onto the
address bus. The low-order 16 bits of the addresses are mulitplexed on the data bus, too.

— In both 186 and 286 mode the SAB 82257 does not check and indicate an address out of
range condition. Address overflow and underflow during block transfer results in an
address wrap around.

145

DMA Transfer

Block Length Control with Byte Count

The initial value of byte count determines the number of bytes which should be transferred
during a block transfer. The initial byte count is indicated
® in the channel command block (CCB)
containing a 24-bit count, therefore a maximum of (16M-1) bytes can be transferred with
one command, or
@ in the list elements of data chaining list
containing a 16-bit byte count, therefore a maximum of (64K-1) bytes can be transferred
with one list element.

If the initial value of the byte count
@ is zero:

— in the channel command block (no data chaining enabled), no data transfer is executed
after setup routine and the termination routine is immediately initiated (command
chaining);

— in a chained list element (tested during data chaining) data chaining is stopped and
block transfer is terminated. Note that in case of data chaining the whole block length is
determined by the sum of byte counts of list elements which are processed before a list
element with a zero byte count occurs.

@ is one:
— the following data transfer operation is always a byte transfer operation.

In the following case the initial value of byte count has to be even:

In reserve transfer mode, if data chaining is enabled and the effective transfer width of
source or destination is 16 bit. In that case all chaining list elements must also contain even
byte counts.

Modification of the byte count register (BCR) is always performed

@ after destination data cycles in the case of destination synchronization of free-running
transfer, or

@ after source data cycles in the case of source-synchronized data transfer.

Thereby the byte count register is decremented by one or two according to the transfer
quantity — byte or word — during the respective data cycle.

After modification the byte count is checked for whether the contents.

@ is one, i.e. the following (last) source fetch is always a byte transfer operation (this is also
considered within prefetching),

@ or zero, i.e. either termination of data transfer or data chaining is initiated.

Note

In 186 mode only a maximum of (1M —1) bytes can be transferred with one command. This is

not checked by the SAB 82257.

Data Transfer without Destination Pointer — Data Read

A special modification of the two-cycle data transfer is the data transfer without destination
pointer. This means, the source data — bytes or words — are read into the data assembly
register (DAR) of the SAB 82257, but not written out to a destination. Therefore only the
source bus cycle of the two-cycle data transfer is executed.

146

DMA Transfer

With the possibility of transfer without destination, the SAB 82257 supports additional /O
control functions:
® Skip
For example: A peripheral data block in a not random-accessible memory such as a
magnetic tape should be skipped.
® Register read
For example: A peripheral register (e.g. status byte) should be read in.

The transfer with no destination pointer is programmed

@ by setting the INC/DEC field for destination equal to 1 1 in CCR (bits 6, 5),

® by defining no "destination synchronization” indicated by the SYN bits (bits 14, 15) in
CCR,

@ by setting all other destination parameters such as W/B, M/IO, destination pointer in CCR
and command block equal to zero.

The control of transfer width, of source cycle, of addressing and pointer modification and of
block length with byte count is analog to two-cycle transfer and identical to single-cycle
transfer (see section 7.5.2).

Data Transfer without Source Pointer — Write Constant

Another modification of two-cycle data transfer is the transfer without source pointer.
Thereby the whole block transfer is performed with the same byte/word constant (literal) out
of the data assembly register DAR of the SAB 82257. The DAR is loaded during the setup
routine with the low word of the source pointer field out of the type 1 command block.

Thus no source cycles but only destination cycles are executed.
With the possibility of transfer without source the SAB 82257 supports additional /0 control
functions:
® Erase
For example: A memory block or a peripheral data block should be erased or filled with a
certain constant.
® Register Write
For example: A peripheral register (e.g. comand register) should be loaded with a literal.

The transfer with no source pointer is programmed

@ by setting the INC/DEC field for source equal to 1 1 in CCR (bits 2, 1),

@ by setting all other source parameters such as W/B, M/IO in CCR equal to zero,

® by loading the byte/word constant in the low-order word of the source pointer in
command block. Note that the low-order word consists either of the word constant or of
two indentical byte constants.

The control of transfer width, of source cycle, of addressing and pointer modification and of
block length with byte count is analog to two-cycle transfer and identical with single-cycle
transfer (see section 7.5.2).

147

DMA Transfer

7.5.2 Single Cycle Transfer

Associated Transfer Parameters and Control Register Bits

The following registers and control register bits are used in order to control data transfer
cycle for the single-cycles transfer mode:
® General Mode Register (GMR)
— MEMBUS/SYSBUS (bit 0): Physical system/memory bus width.
— IOBUS/RESBUS (bit 1): Physical resident / I/O bus width.
— RM (bit 2): Local mode/remote mode.
Note
Single-cycle transfers can be performed in remote mode with the system bus, if the
peripheral is local and the memory in system space.
— CYCn (bits 4, 5, 6, 7): = 1, i.e. single-cycle DMA transfer mode of channel n.
® Channel Command Register (CCR)
Note
The single-cycle transfer is always programmed with the source parameters only. The
destination parameters in the command block have to be all zero.
— M/IO (bit 0): Data in I/0 / memory space for local mode. Data in resident/system space
for remote mode.

- INC (bit 2) . . T
DEC (bit 1) ° Source pointer modification.
Note

INC/DEC = 1 1 (no pointer) is not allowed.

— W/B (bit 3): Logical bus width word/byte.

— SYN (bits 15, 14): External control of the direction of data flow:
SYN = 0 1: (source synchronization) external write operation.
SYN = 1 0: (destination synchronization) external bus read.
SYN = 1 1: (free-running) is not allowed.

® Source Pointer Register (SPR)

Note
In single-cycle transfer mode the SPR contains the address — source or destination —

which is needed for the transfer.
® Destination Pointer Register (DPR)
Note
Has to contain zero for single-cycle transfer mode.

® Byte Count Register (BCR)

Transfer Width

Before any data bus cycle is executed, the logical bus width of the addressed location (W/B
bit) is compared with the related physical bus width (MEMBUS/SYSBUS, I0BUS/RESBUS).
To identify the effective transfer width with these source parameters the same rules are used
as described for two-cycle transfer (see section Two-Cycle Transfer Width).

Since data cannot be assembled or disassembled during block transfer the effective transfer
width

@ is always bytes, if effective transfer width defined by source parameters is 8 bit (byte)
® is always words, if effective transfer width defined by source parameters is 16 bit (word).

148

DMA Transfer

Data Cycle Control

In single-cycle transfer mode only one data cycle, either the source cycle or the destination
cycle, is executed per DMA transfer. Since it has been assumed that the requesting device is
an I/0 device, the SYN bits in CCR are only needed to identify the requesting device, i.e. the
selection of source or destination is controlled by the synchronization bits SYN. If source has
to be addressed (destination synchronization), a read cycle is performed, and in case of
destination (source synchronization) a write cycle. Addressing has to be considered if a 16-
bit physical bus width (MEMBUS/SYSBUS, IOBUS/RESBUS in GMR are equal to 1) is
combined with an 8-bit logical width (W/B = 0 in CCR). Since in that case always byte
transfers have to be executed (according to the table in section Two-Cycle Transfer Width),
the least significant bit of the address pointer determines the byte position on the 16-bit data
bus. Therefore, if the address is incremented or decremented, an 8-bit peripheral can only be
connected to a 16-bit bus by means of a byte swap logic (e.g. two SAB 8286A components).

Odd or even addressing must also be considered if the effective transfer width is 16 bit:

Even Addresses Odd Addresses
Real word cycles are performed Two-byte cycles are executed,
(only this makes sense). if addresses are decremented

or not modified.

At first, one byte transfer
and then word transfers
{align case) are executed,

if addresses are incremented.

During single-cycle transfer, data is directly transferred from source to destination and the
SAB 82257 never issues data by itself. Each data cycle is internally controlled as a read cycle
independent of whether the executed bus cycle is a write or a read cycle.

Addressing and Pointer Modification

In a channel command block the one address which is needed for single-cycle transfer is
always stored at the source pointer location. The control bits for memory / 1/0 space and for
address modification (INC, DEC bits) are always used from the source part of the CCR.
Addressing and pointer modification is executed as described for two-cycle transfer in
section 7.5.1.

Only exception
INC, DEC = 1 1 (no pointer) is not allowed.
Address modification is performed after the respective data bus cycle.

Block Length Control with Byte Count

The byte count register is modified after each transfer. The other control principles of block
length control are the same as described for two-cycle transfer (including data chaining) in
section 7.5.1.

149

DMA Transfer

7.6 Data Chaining
Data chaining allows to handle a set of data blocks as one logical block and vice versa.

Source Chaining allows gathering of a series of single blocks and transferring them to one
logical block.

Destination Chaining allows scattering one logical data block and transferring the parts to
different locations.
The sequence of the single blocks is determined by a link list.

Two types of data chaining are supported:

@ list chaining
@ linked list chaining

In case of list chaining (see figure 70), the link list is a sequence of entries which specify each
the length and location of a single data block.

Application:

Transmission or reception of "data packages” consisting of fixed elements like header,
control block, data, etc.

continuous. Therefore

iste entry hasto Qnorlf\/ the

1asS 10 Sped!

In case of linked list chaining (see figure 71), th

hanaath tha lanAath
peneatn tnhe lengtn and location of the associa

= -
3
@
@
[o
[
0
—_ ~
o
0]

location of the next link list entry.

Application:

Vector graphics where different parts of the display are stored in different data blocks and
can be added or removed from the display dynamically.

Data chaining is stopped, if the byte count field of the actual list element contains zero.

7.6.1 Associated Control Register Bits and Parameters

Additionally to those of data transfer control, the following control bits and parameters are
used in order to perform SAB 82257 data chaining features during data transfer:

® Channel Command Register (CCR)
— LLC/LC (bit 9, bit 8): 0 0 No chaining.
0 1 List chaining.
1 0 Linked list chaining.
Note
Only one of the bits LC and LLC must be set.
— SC (bit 10): Select chaining: destination/source data chaining.

Note
The SC bit has to be one for single-cycle data chaining, since the list pointer is always
stored on source pointer location in command block in this mode.

@ List Pointer Register (LPR).

150

DMA Transfer

(Destination) List Chaining

[Command Pointer

Type 1 Command

Source Pointer

Chain List Pointer

Not Used

Channel Status

Channel Command Block

Data
Block
#2

Byte Count

Data Pointer
- 0 -

Byte Count

Data Pointer
- 0 -

Byte Count

Data Pointer
- 0 -

Data Chain List

151

DMA Transfer

Figure 71
(Source) Linked List Chaining

Command Pointer
) OntNp_
in Memory
Type 1 Command
Link Pointer
Byte Count
Destination Pointer
Data Pointer
Not Used
Link Pointer
Channel Status
Data
Block
Channel Command Block #1 Byte Count
Data Pointer
Link Pointer
Data
Block Byte Count
#2
Data Pointer
Link Pointer
Data -0-
Black
- | ———
Linked Lists

152

DMA Transfer

7.6.2 List Chaining

List data chaining can be enabled by the LC flag (bit 8) in the type 1 channel command, for
each channel command block. List chaining is normally used for memory-to-l/O or 1/0O-to-
memory data transfers. Thereby different memory blocks are linked together to form one
data block for the peripheral (source chaining), or the data block from the peripheral is
scattered to different memory blocks (destination chaining). The different data blocks in
memory are specified in the chain list.

The data chain list is built as a sequence of list elements defining data blocks which should
be linked together (see figure 73). Each list element consists of three words and contains

@® a 16-bit byte count and
® a 24-bit data pointer.

Thus, each list element describes up to 64 KBytes space (or segment) in memory. The data
chain list ends with a list element with zero byte count.

If list chaining is enabled in the type 1 channel command, the source pointer (if source
chaining, indicated by SC bit = 1) or the destination pointer (if destination chaining, indicated
by SC bit = 0) is replaced by a pointer to the chain list (see figure 72). While doing data
chaining the byte count in the channel command block is not used.

During the setup routine after channel start, data pointer and byte count are fetched from the
first list element of the data chain list instead of the command block. Then the list pointer in
the list pointer register (LPR) is incremented by 6 to the next list element.

Tha CAR Q29E7 nranrnacang aan i
1€ OMD 04457 piULESSTS Talii

@ data pointer (source or destination) in list element,

® “second” pointer (destination or source) first in command block and then — after first
block transfer — in pointer register SPR or DPR),

® byte count in list element,

® unchanged channel command.

Such a block transfer specified by a list element (elementary block transfer) is part of the
whole block transfer. Thereby this elementary block transfer is executed and controlled in
exactly the same way as specified in section 7.5 "Data Transfer”. This includes the treatment
of address boundary, logical/physical transfer width, transfer acceleration, transfer direction
control, and so on. Important here is the control of the last byte transfer on a bus with 16-bit
transfer width and address modification control of the "second” pointer.

There exists a very specific case:

If the last data transferred on a 16-bit bus is a byte (e.g. initial byte count or address
boundary) this has to be observed since the SAB 82257 continues data transfer after chaining
® with the new data address out of the new list element, and

@ with the "second” pointer, which can be modified or not.

If no modification has to be performed on the “second” pointer, the original address as it is
stored in the command block is used. This means in case of a last-byte transfer (first half of a
word) on 16-bit bus, the next elementary block is started with a word transfer and not with a
byte transfer (no acceleration possible).

153

DMA Transfer

If the “second” pointer has to be modified, the chained elementary block transfer starts with
the new address after the last incrementation (or decrementation as programmed). There-
fore in reverse transfer mode with 16-bit effective transfer width, the byte counts in the list
elements have to be even.

After a complete block transfer specified by a list element, i.e. byte count has reached zero
and last byte or word is transferred, list data chaining is executed if

® LC bit in channel command register (CCR}) is set, and
® no other termination condition exists.

The execution flow during list data chaining is as follows:
1. Fetch byte count out of next list element, addressed by LPR,
2. increment LPR by 2,
3. check new byte count,
— if BC = 0, stop chaining and go to termination processing,
— if BC more than 0:
4. fetch new data address — low word — with LPR and load it
— if SC = 1, into SPR,
— if SC = 0, into DPR,
5. increment LPR by 2,
6. fetch new data address — high byte — with LPR and load it
— if SC = 1, into SPR,
— if SC = 0, into DPR,
7. increment LPR by 2,
8. continue data transfer with new parameters.

7.6.3 Linked List Chaining

Linked list data chaining is a modification of list chaining and can be enabled by the LLC flag
(bit 9) in the type 1 channel command for each channel command block. In case of linked list
chaining the list elements, defining data blocks which should be linked together, are not
combined in one chaining list, but distributed in memory (see figure 75).

Each list element consists of five words and contains

® a 16-bit byte count,
@ a 24-bit data pointer and
® a 24-bit link pointer (a pointer to the next list element).

Thus — as in case of list chaining — each list element (see figure 75) describes up to 64 Kbytes
space (or segment) in memory.

A list element with zero byte count field indicates end of link.

If linked list chaining is enabled in a type 1 channel command, the source pointer (if source
chaining, indicated by SC bit = 1) or the destination pointer (if destination chaining, indicated
by SC bit = 0) is replaced by a link pointer to the list element (see figure 74). While doing data
chaining the byte count from the channel command block is not used.

During the setup routine after channel start data pointer and 16-bit byte count are fetched
from the list element pointed to by the link pointer in source (source chaining) or destination
(destination chaining) pointer location, instead of the channel command block.

Then the list pointer to the next list element is fetched out of the current list element, i.e. the
list pointer is not incremented as in list chaining.

154

DMA Transfer

{ Figure 72

Channel Command Block Configurations

Bit 15 0 15 15 0
Type) Command Type 1 Command Type 1 Command
Source Pointer Link Pointer Source Pointer
-0- -0- -0-
Destination Pointer Destination Pointer Link Pointer
-0- -0- -0-
Byte Count Not Used Not Used

Channel Status

Channel Status

Channel Status

Data

Chain A

List

List Element n

o

wsB ((C:] (€]
Data Chaining Source Chaining Destination Chaining
Disabled Enabled Enabled
Figure 73
Data Chain List and List Element
Bit 15 0 Bit 15 0
List Element 1 Byte Count
List Element 2 Data Pointer List
Element

155

DMA Transfer

The SAB 82257 processes each list element as an autonomous block transfer specified with

® data pointer (source or destination) in list element,

® “second” pointer (destination or source) first in command block and then — after first
block transfer — in pointer register SPR or DPR),

® byte count in list element,

® unchanged channel command.

Such a block transfer specified by a list element (elementary block transfer) is part of the
whole block transfer. Thereby this elementary block transfer is executed and controlled in
exactly the same way as specified in section 7.5 “"Data Transfer”. This includes the treatment
of logical/physical transfer width, transfer direction control, and so on (see also section
7.6.2).
After a complete block transfer specified by a list element, i.e. byte count has reached zero
and last byte or word is transferred, linked list data chaining is executed if
® LLC bit in channel command register (CCR) is set, and
@® no other termination condition exists.
The execution flow during linked list data chaining is as follows:

1. Fetch byte count of next list element, addressed by LPR,

2. increment LPR by 2,

3. check new byte count,
- if BC = 0, stop chaining and go to termination processing,
— if BC more than 0:
4. fetch new data address — low word — with LPR and load it
— if SC = 1, into SPR,
- if SC = 0, into DPR,
5. increment LPR by 2,

6. fetch new data address — high byte — with LPR and load it
— if SC = 1, into SPR,
— if SC = 0, into DPR,
7. increment LPR by 2,
8. fetch new list pointer — low word — with LPR and load it into temporary register,
9. increment LPR by 2,
10. fetch new list pointer — high byte — with LPR and load it into temporary register,

11. load the whole new list pointer out of temporary register into LPR (LPR points now to
byte count of the next list element),

12. continue data transfer with new parameters.

156

DMA Transfer

Figure 74

Bit 15

Channel Command Block Configurations

Figure 75

List Element

15 15
Type 1 Command Type 1 Command Type 1 Command
Source Pointer Chain List Pointer Source Pointer
-0~ -0- -0-
Destination Pointer Destination Pointer Chain List Pointer

-0- -0- -0-

Byte Count Not Used Not Used
-0~ -0- -0-
Channel Status Channel Status Channel Status

(q¢:] B s

Data Chaining Source Chaining Destination Chaining

Disabled Enabled Enabled

Bit 15
Byte Count

Data Pointer

_0-

Link Pointer

o

157

DMA Transfer

7.7 Termination of Data Transfer

7.7.1 Termination Conditions

A data transfer can be terminated due to one or two of the following indications and
conditions (see figure 77):

1.

Byte Count End

Two options:

Condition (1): Byte count is zero and data chaining is not enabled (standard termination
condition).

Condition (2): Data chaining is enabled and new fetched byte count is zero.

External Termination

Condition (3): External termination via the channel’s EOD line, if enabled by the EXT bit
in CCR.

As described in section 5.3.2 the end of DMA (EOD) pins can be used to receive an

asynchronous external terminate signal to terminate a running DMA transfer. For this

purpose, the EOD lines have to be forced low for a minimum of 2 T-states by external

circuitry (see figure 76).

An external termination is enabled by the SAB 82257 during the channel status "DMA in
progress” as indicated in the general status register (GSR).

Additionally, an external termination is only processed if it is enabled by the EXT bit in
the type 1 channel command.

The data transfer can also be stopped by the CPU loading the general command register
(GCR) with a STOP command. In that case the channel is not really terminated. Therefore this
channel stop condition is not included in the following termination description.

The terminate conditions are signalled by the corresponding bit for each type in the channel
status register (CSR), see next section.

Figure 76
End of DMA Signal (EOD Input)

CLK 5\—"

f——— 27

AR SAB
= 82257

m
o

t=——-250 ns Min—=

158

DMA Transfer

7.7.2 Associated Control Register Bits

The following control register bits and parameters are used in order to control termination of
DMA transfer due to
1. Byte Count End
® Channel Status Register (CSR)
— BC (bit 0): Transfer terminated because of exceeded byte count.
® Channel Command Register (CCR)
— LC (bit 8)
LLC (bit 9) ¢ Enable data chaining and its modifications.
SC (bit 10)
— EOD (bit 11): Enable synchronous End-of-DMA signal.
® General Status Register (GSR)
— DMSTn: DMA status.

2. External Termination

® Channel Status Register (CSR)
— ET (bit 1): External termination (EOD not programmed).

® Channel Command Register (CCR)
- EXT (bit 12): Enable external termination [the peripheral device uses the channel’s

EOD line (strobe pulse) for external termination signal].

® General Status Register (GSR)

— DMSTn: DMA status.

7.7.3 Initiation of Termination

Before starting the common termination processing, the termination indication (see section
7.7.1) has to be evaluated and — in some cases — specific operations have to be performed.

Transfer termination due to condition (1):

If EOD is enabled in CCR, a strobe pulse is transmitted on the channel’s EOD line. This EOD

pulse of two processor cycles’ length is synchronous

® to the last data cycle of the synchronizing device in case of source or destination
synchronization, or

@ to the last destination data cycle in the case of no synchronization (free-running).

Therefore this strobe pulse is called synchronous EOD in contrast to the asynchronous EOD
which is generated by a type 2 command.
After the last data cycle, processing of termination is started immediately.

Transfer termination due to condition (2):
The processing of termination is started immediately.

Transfer termination due to condition (3):
If external termination is enabled, an external EOD signal is expected during channel status
“DMA in progress”, as indicated by the DMST bits in GSR.

DMA is in progress from beginning after setup until start of termination.

If an external EOD is received, an already running bus cycle (EOD is synchronous to the bus
cycle) is terminated. The following processing is the same as for an EOD which is not
synchronous to a bus cycle (which needs a new prioritization).

159

DMA Transfer

It is assumed that during synchronized DMA transfer an external EOD is issued by the
synchronizing device and that this device does not request another bus cycle.

Therefore

— in case of destination synchronization execution is started immediately;

— in case of source synchronization a byte or word which is already fetched from source
and stored in the data assembly register (DAR) will still be transferred to destination
before termination execution is started;

— in case of no synchronization (free-running) the DMA transfer is treated as source-
synchronized data transfer.

Figure 77
Termination Conditions

©, ©

If EOD Specific
Enabled: Operation
EOD Pulse

Start of Termination Execufion*)

*) see section 7.7.4.

160

DMA Transfer

7.

7.4 Execution of Transfer Termination

The common termination routine is identical for all channels and transfer modes and it
includes the following operations:

1.

2.

Change channel status — indicated by DMST bits in CCR ~ from "DMA in progress” into
“organizational processing” (masking of following data requests).

Generation of termination status bits (BC, ET) in channel status register (CSRn). One or

two of the termination status bits can be activated.

3. Store CSR into status word location of type 1 channel command block.
4.
5. Without change of the channel’s status bits in GSR, i.e. channel still remains in state

Increment channel command pointer in CPR by 16.

"organizational processing”:
Fetch next type 1 or type 2 channel command with the new command pointer.
Execution of command chaining.

The execution of termination belongs to the last data transfer request or to external EOD
request. Therefore no extra priority request control is performed for termination execution.
With the execution of transfer termination the type 1 channel command (transfer command)
processing is finished.

7.7.5 Saving Status on DMA Termination

On termination of a DMA transfer, the channel status is written into the command block for
examination by the CPU. This channel status (see section 6.3.2 under Channel Status
Register) contains information about.

@ the termination condition(s),

® the occurrence of errors and

@ halted state.

Figure 78
Status Information within CCB

5 Type 1 Command 0

Source Pointer

j

Destination Pointer

Byte Count

=—-—Channel Command Block ——=
° < ’ '

Written after Every
Channel Status } DMA Termination

161

Concurrent Channel Operation

Concurrent Channel Operation

8 Concurrent Channel Operation

8.1 Survey

The SAB 82257 allows concurrent processing of up to four DMA channels. Thereby the
concurrent processing is controlled by internal and external requests and a priority system to
handle them, since only one channel can actually be serviced at a time.

Each channel has a certain priority for its data transfers and organizational tasks. Data
transfers or organizational tasks which are processed by a lower priority channel can be
interrupted by requests for a higher priority channel after each bus cycle (only exception:
unseparable bus cycles). If the highest priority routine is finished, the one of the waiting
requests will succeed, which then has highest priority.

The channel’s priority can either be fixed or variable depending on the order given in the
general mode register (GMR).

A certain priority of a channel is valid not only for the data transfers of the channel but also

for its organizational processing. The justification for this is illustrated by two examples:

1. A highest priority setup routine should be finished very quickly — only possible if it is not
interruptable by a lower priority channel — since the fast peripheral may already have
DMA requests.

2. The maximum speed of data chaining is only possible if it cannot be interrupted by a
lower priority data transfer.

Consequently, the SAB 82257 offers a fully nested processing of internal and external
requests. Thereby the priority logic must handle competing requests for the same channel or
for different channels.

Concerning the priority system of the SAB 82257 also the arbitration of the local bus and —in
remote mode — of the system bus should be considered in some way.

The SAB 82257's bus access time can be controlled by the general burst register (GBR) and
the general delay register (GDR). Thus even the highest priority channel may be interrupted
or delayed by the SAB 82257's bus arbitration unit. But within some organizational routines
itis necessary to have unseparably chained transfers and to prevent the CPU from accessing
the SAB 82257’s control space in external memory.

For example:
The CPU must not change the source pointer between SAB 82257's two (or three in case of 8-
bit bus) fetch cycles.

The SAB 82257 supports such a lock mechanism by means of a continuous bus request

(HOLD signal), independent of whether the general burst counter is exceeded or the HLDA

signal is cancelled. The SAB 82257 activates this “lock mechanism” during execution of the

following routines (unseparable bus cycles):

® read 24-bit pointer and byte count from control space,

® word transfer on odd addresses, which is realized by two bus cycles where each transfer
is a byte.

As a result, these unseparable chained transfers cannot be interrupted by higher priority
requests.

165

Concurrent Channel Operation

The switching from one channel to another after a bus cycle does not affect the data transfer
rate. It is important to notice that channel switching occurs only when both channels are
ready to run.

8.2 Associated Control Register Bits

The relative priority among the four channels for DMA operation is determined by the
following register bits:

® General Mode Register (GMR)
— PRI (bits 9, 8): Channel priority.

PRI Priority Comments
Bit 9 Bit 8 (0 = highest)
of Channel
3 2 1 0

0 0 3 2 1 0 All channels have fixed priority

(channel 0: highest priority).
0 1 .
1 0 Not valid

All channels have rotating priority (i.e. all
1 1 R R R R channeis appear to have the same priority).

8.3 Control of Channel Priority

Each channel has a certain priority for its data transfers and organizational tasks according to
the order given in the general mode register (GMR). As specified in the PRI field (bits 8, 9) of
the general mode register (GMR) each channel can have either

@ fixed priority or

@ variable priority.

In case of fixed priority the channel’s priority corresponds to its number. If channel 0 has
fixed priority then it is always the highest priority channel and a fixed channel 3 has always
lowest priority.

Thus, for example, if all channels have fixed priority, i.e. PRI is equal to 00, the channel
priorities are as follows:

Channel Priority

(0 = highest)
Channel 0 0
Channel 1 1
Channel 2 2
Channel 3 3

166

Concurrent Channel Operation

In case of variable priority, the priorities change between all four channels (PRI = 11).
Thereby the change of priority is organized in a modified “rotating” method. This means,
that the priorities of variable channels are rotated after each bus cycle — which is not
unseparably chained with the following bus cycle — of a variable channel. Thereby the
channel with the last bus cycle gets the lowest priority of the variable channels.

The following table shall illustrate this organization:

. Initial Priority WI;ri(;riity after Execution of Bus Cycle
(after reset) on Channel Number
0— 11— 2— 3—

Highest — 0 1 0 0 0

1 2 2 1 1

2 3 3 3 2
Lowest — 3 0 1 2 3
Note

— After RESET signal, the variable channel priorities are determined according to the

channel numbers (fixed priorities).

— A new start of a variable priority channel does not cause any change in priority.
— Channel switching has absolutely no effect on the data transfer rate.
— It is important to remember that channel switching occurs only when the respective

channels are ready to run.

8.4 Priority Control of Requests

The processing of internal or external requests is controlled by a fully nested priority system

which includes all 4 channels.

Since more than one request can compete for the same channel, the requests must be
prioritized also in relation to their types reflecting their relative importance.

The following table gives a survey.

Typesa Channel Requests

amnnel STOP (command from CPU"»c;ut of GCR).

External Asynchronous Termination Request (via EOD).

Internal CONTINUE Request of Previously Interrupted Sequence.
Internal (without synchronization) Data Service Request.
External (with synchronization) Data Service Request.

Channel WAIT (idle).

77?%iority
(0 = highest)
0

1

167

Concurrent Channel Operation

The slave operations, where the SAB 82257 is addressed by the CPU, have highest priority of
all activities. The SAB 82257 is immediately halted (remote mode) for taking over the slave
part of the bus cycle transaction.

Thus a received STOP command is executed without any channel prioritization.

A START or CONTINUE command as well as all other types of channel requests will only be
executed if the corresponding channel has highest priority of all requested channels.

Note that a channel START (setup) or CONTINUE command will be accepted only by a
stopped channel and therefore no competition with other requests for the same channel
exists.

A not interruptable block transfer on a lower priority channel is not supported.

Note

Data chaining and internal termination (byte count expired)need not be prioritized because
these routines belong to the data service request processing (priority 3). Also error condi-
tions (see chapter ,Error Detection” are always connected with certain channel activities.

168

Interrupt Control

Interrupt Control

9 Interrupt Control

9.1 Survey

The SAB 82257 has 4 EOD pins, one for each channel, to interrupt the CPU and communicate
with the system environment. Since the EOD pins are multiple function pins, their applica-
tion is programmable. Thereby input and output functions have to be distinguished.

@ As an input, the end of DMA (EOD) pin can be used to receive an asynchronous external

terminate signal to terminate a running DMA transfer if it is enabled with the EXT bit (bit
12) in the type 1 channel command.

This function of the EOD signal is described in chapter "DMA Transfer”.

@ As an output, the EOD pin can be used to send out a pulse which interrupts the CPU (in
this case the CPU can be interrupted by the peripheral as well as by the SAB 82257) and/
or signals a specific status to the peripheral, e.g. transfer aborted or end of a block or
send/receive next block, etc. Thus the SAB 82257 has one programmable external signal
per channel.

In the following description, only the output functions of EOD pins are discussed. In this case
two basic functions have to be distinguished:

® INTOUT function (interrupt output)

@ EOD function (end of DMA)

9.2 Associated Control Register Bits

The INTOUT function is controlled with the following control register bits:

® General Mode Register (GMR)
— MINTn (bit 10, bit 11, bit 12, bit 13): Mask the interrupts from channel n.
— ENCI (bit 14): Common interrupt enabled/disabled.
® General Status Register (GSR)
— INTn (bit 2, bit 6, bit 10, bit 14): Interrupt status.
® Channel Command Register (CCR) for type 2 commands
— IT (bit 10): Generate interrupt.

The EOD function is controlled with the following control register bits:
® Channel Command Register (CCR) for type 2 commands

— ED (bit 11): Generate EOD pulse.

Note

Bit 14 and bit 15 in CCR equal 0 0.
® Channel Command Register (CCR) for type 1 commands

— EOD (bit 11): Enable EOD output.

‘Note .
Bit 14 and bit 15 in CCR do not equal 0 0.

171

Interrupt Control

9.3 Basic Signals

9.3.1 End of DMA Signal (EOD)

EOD is a channel-specific, active low pulse of 2 T-states’ length and is always enabled by
software.

EOD signals can be generated synchronous to transfer as a result of type-1-command byte
count termination (time-critical signalling) or asynchronous to transfer by a specific type 2
command as typically required for interrupting the CPU at the end of a command chain.

Figure 79
EOD Output Timing

m
(o]
(=)
=]

9.3.2 Interrupt Out Signal (INTOUT)

INTOUT can be hardware-generated, i.e. the signal is activated by the hardware when a fatal
error occurs on any channel, or it can be enabled by software as a result of a type 2
command. The channel which is generating INTOUT is indicated in GSR with the channel’s
INT bit.

INTOUT remains active until all INT bits in GSR are reset by the CPU with the general
command "clear interrupt”.

The output processing of INTOUT depends on the ENCI bit and the four MINT bits in GMR:

® If ENCI = 0, i.e. common interrupt not enabled, an internally produced INTOUT is issued
on the specific EOD pin as active low EOD pulse, if the channel’s interrupt
mask bit (MINT) is zero.

Figure 80
Channel-Specific INTOUT Timing

CLK

2T ——

INTOUT
(on EODnN Pin) l

172

Interrupt Control

® If ENCI = 1, i.e. common interrupt enabled, the INTOUTs of all four channels are issued
on the EOD2 line (EOD pin of channel 2), if the mask bits (MINT) of the
generating channels are zero. In that case INTOUT is a static active high
signal.

Figure 81
Common INTOUT Timing

INTOUT I -
{on EODZ Pin)

Reset by Setting
1-Bit in GCR

Note

Common interrupt (ENCI = 1) should be used, if the EODs of the channel serve other
purposes than CPU interruption, e.g. for communication between SAB 82257 and peripher-
als (see chapter “Communications Mechanism” sections 5.2 and 5.3).

9.4 Hardware-Generated Interrupt

A hardware-generated interrupt is an INTOUT (issued according to the ENCI bit) generated
by the hardware itself, if a fatal error condition was detected. The INTOUT signal is only
issued if it is not masked by the channel’s MINT bit in the general mode register. The
initiating fault condition is always a “command not valid” condition, detected during setup
or command chaining (see chapter "Error Detection”).

The interrupt sequence is as follows:

1. Set status bit FE (bit 6) in the channel’s CSR.

2. Stop channel and indicate this through the channel’s DMST bits in GSR.

3. Set the channel’s INT bit in general status register (GSR).

4. If interrupt enabled by the channel’s MINT bit in GMR: Issue INTOUT according to ENCI
bit.

5. Reset INT bit, if a “clear interrupt” for that channel is written into the general command
register by CPU.

6. Reset INTOUT, if no other interrupt is pending, i.e. no other INT bit is set in GSR.

Note
The channel’s INT bit in general status register (GSR) is activated independently of the MINT
bit in GMR.

173

Interrupt Control

9.5 Software-Generated Interrupt

Software generated interrupts are
@ EOD signals generated as a result of
— atype 1 command byte count termination and/or
— atype 2 command,
® INTOUT signals generated as a result of a type 2 command.

Interrupts Generated as a Result of a Type 1 Command

Interrupts generated as a result of a type 1 channel command are always synchronous EOD
signals controlled by byte count.

If byte count is exceeded and the EOD bit (bit 11) in the channel command register is set, an
EOD signal is transmitted with the last transfer cycle. Thereby the EOD signal is issued with
the last source cycle in case of source synchronization of DMA transfer, or together with the
last destination cycle in case of destination synchronization or free-running DMA transfer.

Note
If data chaining is enabled, type 1 EOD signals should not be used for interrupts since
multiple EOD signals are issued — at every exceeding byte count in list elements.

Interrupts Generated as a Result of a Type 2 Command

All type 2 channel commands allow to generate asynchronous EOD signals or INTOUT

signals.

After command execution

@ an EOD signal is activated, if the ED bit in CCR equals one, and

® an INTOUT signal is activated, if the IT bitin CCR equals one and if interrupt is not masked
by the channel’s MINT bit in general mode register (GMR).

Note
The channel’s INT bit in general status register (GSR) is activated independently of the MINT
bit.

9.6 Summary

In case of an EOD from a DMA channel, the signal itself determines the appropriate channel
number (the EOD signal is issued on the channel-specific EOD pin).
In case of INTOUT from a DMA channel the issuing channel is indicated in the general status
register (GSR) by means of the INT bit.
Additional information available to the CPU is contained in
® the General Status Register (GSR)
In the GSR the DMST bits indicate whether the channel is stopped or not, thus determin-
ing a stop interrupt or an intermediate interrupt.
® the Command Pointer Register (CPR)
In case of a stop interrupt (indicated by DMST bits in GSR) the CPR points to the channel
command executed last.
® the Channel Status Register (CSR)
In the CSR the termination condition or an error detection is indicated.

Additional context information in registers available to the CPU is for example

@ last byte count,
® source address or
® destination address.

174

Error Detection

Error Detection

10 Error Detection

The SAB 82257 performs limited error checking for type 1 command errors (fatal errors)
during "setup and "command chaining”. Thereby the checked fatal error conditions always
are "command not valid” conditions. If such a fatal error condition is detected, the affected
channel processing is interrupted and the fatal error bit FE (bit 6) in the channel’s status

register CSR is set.

10.1 Fatal Errors

Fatal errors are detected during decoding of type 1 channel commands in combination with
the general mode register (GMR). Thereby four conditions are used for detection, and
allowed combinations of them lead to four different transfer executions, such as two-cycle
DMA or single-cycle DMA. All other combinations (besides the four allowed ones) generate a

fatal error.

10.1.1 Error Conditions

The four source conditions, which are decoded, are the following:
@ single-cycle transfer (from GMR)

@ transfer without destination pointer (from CCR)

@ transfer without source pointer (from CCR)

® synchronization error

The following table giv

..... at

transfer operation:

es the valid combinations of these four conditions in accordance

Intended Conditions”

Transfer Single No Dst. No Source Sync.
Operation Cycle Pointer Pointer Error?
Two-Cycle DMA 0 0 0 -
Transfer

Transfer without 0 1 0 0
Destination Pointer

Transfer without 0 0 1 0
Source Pointer

Single-Cycle 1 0 0 0
DMA Transfer

Y 1: TRUE
0: FALSE

Allratiﬁeﬁr Combinations Lead to Fatal Errors!

? The synchronization error is predecoded and activated in the following cases:

— Single-Cycle DMA combined with free-running synchronization mode

— Transfer without destination pointer combined with destination synchronization

— Transfer without source pointer combined with source synchronization

177

Error Detection

10.1.2 Reaction on Fatal Errors

If a fatal error condition is detected on a channel, the following steps are performed (see also
section 9.4 "Hardware-Generated Interrupt”):

1.
2.

3.

4.

Set error bit FE (bit 6) in the channel’s status register (CSR).

Stop channel and indicate this through the channel’s DMST bits in general status register
(GSR).

Set channel-specific INT bit in the general status register (GSR). The channel’s INT bit is
activated independently of the MINT bit in GMR.

Send interrupt (INTOUT) if not masked by channel’s MINT bit in general mode register
(GMR) according to ENCI bit in GMR.

For error investigation the CPU should react on error INTOUT with:

1.
2.
3.

Read GSR (what channel? channel stopped?).
Read CSR (error?).
Read CPR and investigate channel command (type 1 command).

10.2 Non-Fatal Errors

Non-fatal errors, are errors, not recognized by the SAB 82257 and therefore not indicated in
the affected channel’s status register CSR, which do not prevent the SAB 82257 DMA

controller from working as it should.
Most of these errors (improper commands) result in a predefined default action.

The following gives some typical examples of non-fatal errors:

Error Action

® Remote mode coincides with 186 RM bit is not inhibited (but read/write
mode pins are also used as outputs).

® Physical bus width is pro- Logical bus width will be set to 8 bit.
grammed to 8 bit and logical bus
width to 16 bit.

@ List chaining and linked list chain- Execution of linked list data chaining.
ing are enabled.

® Data chaining and last data trans- Data transfer is continued after chaining.

fer was a byte transfer to or from
16-bit device (odd byte count) dur-
ing reverse transfer.

178

Operating Instructions

Operating Instructions

11 Operating Instructions

11.1 Channel Programming Examples

A sequence of operations can be programmed for each channel using command chaining.
This can be executed without CPU intervention and is achieved by using a mixture of type 1
and type 2 commands. Although the commands are easy to use, powerful programs can be
generated.

This section gives brief examples illustrating how to program such a command chain. The
examples can easily be adapted to various applications. In addition, the second example
adds a complete channel program, written in ASM86, that contains all codes for the
SAB 82257 as well as for the associated processor which is necessary to run the channel. The
examples show how standard features of ASM86 are an aid to program the SAB 82257 in a
structured manner.

Figure 82
Channel Program for a Read from Disk Operation

Channel Program Comments
Command . Transfer
Source : Memory C K d
Destination : Disk Controller ?S Z Szemnf::::sn
Byte Count - 03 plus p ’

Synchronization : None

Command : Jump Conditional

Condition . None F—1) Delay by a NOP command.
Command . Write

Source : None (DAR) p disk troll
Destination : Disk Controller frogrurg sk controtier
Byte Count o1 or read access.

Synchronization : None

Command . Transfer
. Disk
Source 1 : Disk Controller Transfer header and sector
Source 2 : Memory to memor
Byte Count :8+128 '

Synchronization : Controller

Command . Stop/Send INT R

Condition " Nome Stop channel and inform CPU.

" The target location for the jump command is arbitrary, as the jump is never executed.

181

Operating Instructions

11.1.1 Example 1: Read from Disk

This example introduces a channel program that reads a specific sector from a disk device.
To initiate the access, the SAB 82257 copies a seek command with some parameters from an
arbitrary memory location to the disk controller. These parameters have to be provided by
the CPU in advance. A NOP command (or several of them, if required) allows the disk
controller to get ready. A read command starts the actual transfer of data. This command is
treated as a literal (no source). The transfer itself is activated by the disk controller (source
synchronization). After the transfer has been completed, the channel is stopped and the CPU
is informed by an interrupt (common interrupt on EOD2 pin).

Note
The header could easily be separated from the sector data using destination data chaining.

11.1.2 Example 2: CRT Refresh

In this example the SAB 82257 independently performs a CRT refresh operation. This
operation includes

— start display on CRT,

— automatically refresh the display from memory,

— inform the CPU about synchronization errors.

Figure 83
CRT Refresh

Memory

=
U

HLDA HOLD < Bus >

SAB <; (RT D
82257 Controller

DREQ s

182

Operating Instructions

In this case, a synchronization error will occur if, for some reason, the CRT controller does
not demand a new screen (start of display memory) after transfer of the complete display
memory. The vertical retrace signal could then be used to activate the appropriate EOD
input. In case of an error, the operation could be stopped. The channel program in this
example sends an interrupt to the CPU and automatically resynchronizes the refresh by
simply jumping to the start.

Figure 84
Channel Program for a CRT Refresh Operation

Channel Program

Command : Write

Source : None

Destination : CRT Controller

Byte Count . 02

Synchronization : None

Command : Transfer

Source : Display Memory
Destination . CRT Controller

Byte Count Display Memory Size

Synchronization :

Controller

Command Jump
Condition : EXT
Command . Jump/Send INT R
Condition : None

Comments

Initiate display.

Transfer display memory
to CTR controller.

Transfer OK:Do it again.

Error: Send interrupt and

start again.

ASMB8E6 allows defining of structures for both kinds of commands: type 1 and type 2. Figure

85 shows a possible realization of these structures.

183

Operating Instructions

Figure 85
ASMS86 Structures for Channel Command Blocks (CCB)

TYPE1_EBLOCK STRUC ;Transfer Command Block
CHMD_1 W ? ‘Type! Command

SPTR_L DU ? ;Source-Pointer

SPTR_H Du ? ydto.

DPTR _L DuW ? ;Destination-Pointer

DPTR_H DW ? ;dto.

BCNT _L Du ? ;Byte—Count

BCNT _H DU ? ;ato.

STATUS bW 00 ;Channel Status Field
TYPE1_BLOCK ENDS

TYPEZ _BLOCK STRUC ;organizational Comand Block
; ——————————————————————————— ; _____________________________
CMD_2 DW ? ;Type2 Command

REF L DW ? ;Jump Pointer/Displacement
REF _H DW ? ;Jump Pointer/0000

TYPE2_ERLOCK ENDS

Once these structures are defined, a CCB can be specified by simply referencing the structure
name and filling in the required parameters:

MOV AX,TRANSFER.STATUS ;Read Channel Status from CCB
The CPU can access the CCBs by addressing the appropriate structure elements:
TRANSFER TYPE1_BLOCK <0C08FH,120AH4,00,8CC3H,00,02,00>

The following pages list the complete channel program (written in ASM86) for the example
2. The code of the channel program for the SAB 82257 is listed as well as the code for the
CPU necessary to initialize the channel program (location references) and the SAB 82257
(registers).

184

ASM86 CRT Refresh Program

Figure 86

Operating Instructions

123r3 s 1+ Iy
154

48171043000 1§) 4a3stbas Indupt HOODZ nd3 qzhzuubzu 0y obooz
0 Tauueyd Ja3istbas Jajutod puewwo)! HOZ+¢G7789YS NB3 0 ¥dd) 6t 0zot
sajstbas Aetap tesauag! HOD+(G5278499S NO3 ¥a@9 L3y 2004
4315163y 154ng TeJauUag! HY0+¢GZZ83¥S NB3 ¥a9 IAx vool
4a1s16as apow Tes3Uag: HBD+/52288Y5 NB3 HH9 9¢ 8001
J4a3s16as puewwod TEs3uag! HOO+4GZ288YS NB3 ¥39 3 aoat
aceds 0/1 0jut paddew (G7788vsSt 143
butposap uo spuadap ‘ssasppe aseg! HOOOL NB3 £52283vS £ oot
Ao e et e e T e e e Rt e 21 43
sssaystbas (5779 gvs ayy 03 saweu bBurubrssy | ¢ 13
Hmmm e e B e R e e T +! [s}3
134
~ B 82
IdWUXI WEHQ0UdTINNYHD) £G7289VS JWUN 4
9
e e m e o -+t (34
: 2
$53JppE TBaJ 114-y7 01 Jajutod 18s340/3uawbas 40 UOTSIaAUD) *g ¢ £7
Burysassas sisels pue (G778 gYS Bul SATITEIITUL fAd) *¥ H 21
wesboud Tauueyo ayy sajepdn ndl g H (¥4
wesBoud TaUURY) -7 H 0z
‘018 ‘sadmionJais g)3 ‘sdJe3stbas jo suoijeserlag 4 H i
‘ a1
e H A
: 91
Nd) 03 1dnuJajut (uowwod) Burpuas woeg dooy Jcdda : dINI dWAr_43) H St
¥O0TQ PUBWWOD (4S3433J O} %OBQ ODOT TEBWJOU : [X3 NO dWNr 830 H Y
(uotjesado ysasiad TENIOE) H £
J3TT043U0D }1¥) 843 03 Asowdw ABTASID 34yl SJB4SUBLY HS34438° 420 H zi
487T043U0D |Y¥) 8ul 01 DUBWWDD-}JB1S B S3NSST IECTCRERE) “ I
- o4
$(43)) S%00TQ PUBWWOD T3uueyd v 340 S3stsund wesboud Tauueus ayy ;¢ 6
¢
. g
R e T I ¢
‘ 9
9861 “ ydtuny ¢ gy suawatg I 4
sjuauodwo) J33ndwod0sdtl ¢ dnoug jusoddng TeITUYDE| ¢ 4B2TNS SUPH H '3
“¢(GZ78 avs a3yl butsn unrjesado usasjas (¥) Joy wesboud atdwexy M £
- b4
....................... | |
324n0s aNTT f80 201

9N830 (7LLHHIGIN3OVY DYS LGIX3/V 98WSY A8 A3IADANI ¥IIFWISSY
_ _ f30°¢GIX3/% NI Q3I9¥7d 3INAOW 123r30
FIdHYXT HYHOOYdTIINNYHD (G778AYS ITINA0H 4C ATEW3ISSY 0°7A ¥ITIH3SSY 0¥IUW 981/88/48/9808 (D°FA) L#S~XANT

39vd 98/81/50 9G:00:%i 3VdHYXT HYBI0YS TINNYHD £ 57793Y5 ¥3ITFWISSY OUIUW 981/88/L8/9808

185

Operating Instructions

123r3 8

SAaN3 xuOAMINMnrp

N000/483utog dunpd
juawasrerdsiqg/Jalutog duwnps
puewwo) zadA]¢

%2018 puBWa) Teuotjeziuebip: INBLS #1078 Z3dAL

SAN3 %3018 13dAl

pPIaT4 SNIE1S [auueyjl’ 0o ma SNLYLS

JunD)-314g¢ ¢ aa INDE

J331Ut0d-uotieutrlsaqé P aa ¥ida
433UT0g-a824n05¢ B

puBwwo) 4adAp:

SON3 339dS aNINYOM
3ulT smels jo Adod!(i)dna 3ZIS 3ANIT LS 4a INITSNLYLS

u33435 30 Ad0J!(.)dNA 3Z1S W3IW SIA 90 AYOWIW AVIdSIQ

AIN3WI3S mu«nmlmzuxzoq

e ————— e - B £
| BaJuy-e3EQ I
o e e e et
JBTICJIUCD 1Y) 404 PUBWWED 3JB3G! HL0DO nd3 nmux»xM»w
3ulT snieis 40 3215t 08 = 1 N3 3IZIS_3NI] IS
AJowsw ABTOSID 3yl 40 8715¢ D8 + GZ NP3 3ZIS WIW SIC
3WT)} ATQWasSSE 1B umoujunt
‘35u343434 uo131Ed07E HOODO NB3 3347007
o S o e B +4
' s3tTuwwng
bmm e mmen e [, . e -
32¥n08
Z 399d 98/81/Y0 9G:00:%} 37dHYX3 WYHOO0¥dIINNUHD £G22849S

e —

5% ——

65 -

i
s 08) 0aco

‘e
LS 0002y 0000

55 e

0s 1000
34 0s00
44 oaso

9y [ala]as]

3NIT rgo 307

¥319WISSY OYIVW 98.4/88/(8/9808

186

Operating Instructions

PUBWWOD d0LS TBUTWIBL!

Aoc,oo.cnv1934m4~mn>h

1dnJadajul ansst pue HSIY43IY 937 01 aArierad dunr!

Acn,Az»z~.a::ﬁ.muu‘xmuauwx\muu,,xmaQNVxchm-Nun>p

1X3 UD HS3¥33¥ @30 03 3AT3IeTaJ dunrt

123r3 s

4015783)

xhz_.u::s»muw

<00 (1X3 dWNM"8D)-HSIU3¥T82D) “HZOOZ> ND0T7Z3dAL 1x3 dWAr AI)

Butureys 3sty1 eyep adsunos Butsn!
P3TGEUB UCTIBUTWLS] TBUJBIX3 YIim!
AJowaw woJjy JBJSUBJ) PIZTuUDJIYdUAS UDTIBUIISAQY

Aoa.gzpzuyhxu.uuz<qu.xammuvxu:qm-_ma>F
3110 91 :suipim sng!
‘354005 1nOYI M waysuedy Butuuns 3a44¢

<Z0'WIND LMD ‘OWD T 1¥LIS HIBODD> #2078 13dAL

HS3Y434782)

L¥Y157 430

INIWO3S HS3¥43Y 1Y)

||||||| +

| ardwexa s1uy3l J4oj wesbousd t1auueyd ay. Buturyap Atrenisy gt

I3 399d 99/84/50 95:00:94

324N0S

370WUX3 WYHIOUd TINNEHD (SZZRIYS

b+ SOM
yat
£04

0t
104
oot

b6
86
L6

3NIT

0oag
0080
aoco

0oao
4403
o0zzo

0000
00000000
00000700
0ocoo0o00

5608

0080
00000020
00000200
00000010

0348

rgo

[ehali}
3z00
Jjzoo

%200
2200
azoo

3100
v1i00
9108
2100
DL0B8

3000
©v000
?000
Z000
0006

201

Y¥Y3TIH3SSY OQUIVW 981/88/(8/9808

187

Operating Instructions

v

13r3 s

XY 0L+ISTT NIVHY WLVIIST AOH

_ B Xy dod

XY BO+LSTT NIVHD «»«m”mu AOW
d0d

ss3yaay AQQHmyxn 19

HsNd

INTTTSALYLS 135440° xq AOH

XY HSNd

aUTT SN3E}S S1 JUaWaTa puzt INITTSALYLS 935XV AOH

X¥y0+1SIT NIYHI vIMaIS3 AOW
]

- ~ Xy d0d

XY “Z0+1S17T NIVH) Yiva:S3 AOW
_ Xy dod

SSINAAY WIISAHD 179D

_ X9 HSNd
AYOMIK AVIASIA LIS440°XY AOM
XY HSNd

U33405 ST 3U3WaTa 154¢ >mozuz->q41mma 935Xy AOKW

HS3¥33Y 1¥D:53 HU¥D0Nd NdI 5D 3WASSY
IN3IH93S WYHI0¥d NdD

SANI HS3W¥33¥™ 1M

3SIT 30 pu3t _ 0o mg
_43¥7207 aa

juawaia puzé 3715 3INIT LS Ma
434)01 4a

IUBWETa 3154t 3215 W3IW SIG MO 1SI17 NIVHI viva
PAJUBJSUBLY 30 D) SYO0TQ BIBP 40 UBIITUIISQf-m-mommmmmmmm oo et

32¥N05

38vd 98/81/80 95:00:%1 37dHUX3 WUHI0Ud TINNYHD T £522949S

%3

A"
17l
oy
651
8L
L5
9Tt
Gsrl
yEL
£EL
fA N}
LEt
ofi
241
ezl
LTy
9L
Sz
yZi
£21
zt
74
0zt
61
Bl
a5
L
S
vl
£41
il
L
oL
601
801
404
%01

3NIT

¥319H3SSY

ael£Ev9Z 9200
8BS SZ00
00vEEY9Z LZ00
86 0700
000s83 400
0s 2108
400083 6100
05 8100
----83 Si00

00%£EVFZ 1100
85 0100
00%£E¥92Z 2000
85 4000
805983 B00C
05 4000
0ooosd y000
05 £000
----838 0000

00DO 3700
00000000 YEOO
000S 89500
40000000 ¥£00
(DDA Z£00

rgao 207

OHIVK 981/88/L(8/9908

188

Operating Instructions

123r3 3
xg‘xa 1no
HUL‘XY ADW
s1dniJajul JeaTd pue g Tauueyd jueis! ¥429°Xa AOW

J33utod puewwod ;0 pusom ybry peost x¥‘xa Lno
Xv dOd
X@ ONI
Xa INI
Xv'xa 1no
~ Xy dod
J3julod puBWWOD 0 pJOM MOT peos 0 ¥dI‘XQ AOW
§S3¥AAY WIISAHd 1T9)
B X% HSNd
1¥V1S 7920 13S440°XY AOM
~ XY HSNd
1¥vL5 330 935°XY AOMW
$ommmee - ——— S m———————— e -yt
1 wesbosd rTauueyds A4123dg v (¢
fme e mmmmmmmmmmmmmmmme S PR PR [, st
Xy‘xa 1no
HOY ‘XY AOKW
HI9'XA AOMW
xy‘xa 1no
jusdsad 99 jo0! HOB XY AOW
Wnwixew B 01 peoY snqQ EmLmDLn» ¥99°X0 AOW
J4B3SUBJY AT2AD BTQNOP:Z‘g ST3uueByd ‘MOLN] uDwwod!
‘yaysueJd) 3T04Ao atbuts:g’y sTauueud ‘Altsotdd paxtyl xg‘xa 1No
535nQ 116-94 YITmM 3p0W TEIOT UT (GZZR 9YS‘ H1:00010100054440°XY AOM
cuotieanbrjuod waysAs! YLD XA AOW

XU‘Z0+¥1dS HS3Y4IN 920 ¥id QUOM:IS3 AOW

_ X9 dod
Xv'004¥1dS HS3Y43Y 820 ¥ld GHOM:IS3 AOW
_ Xv dod

S53%00Y° WIISAH T1vD

_ _ X9 HSNd

ISTTUNIVHI 9190 135340°XY ADMW

Jajutod qurt!
Aq pacetdas Jaijutod 304n0st

_ ~ Xy
1SIT NIYHD vivd 935Xy AOW

D e T e e e et

i (ssasppe 3SI1T uteyd eijep) wesbousd 1auueyd urylim suajutod ajepdp -z ¢
33¥n0S

s 39vd 98/81/50 95:00:71 37dHYX3 HYUDOYdIINNYHD £ G7784VS

b+ £61
6}t
161 43 3900
061 oovisa 8900
681 0100ve 8900
881
L84
981
G811
781 33 ¢£%00
£91 8s 9900
281 2% S900
18t Iy ¥900
084 43 £900
6LL 85 7900
8L4 0i0Zvd 4600
e 001183 2500
9L 0S 8500
Sl 000084 8500
Ly 0S <£S00
€LY o ----88 ¥S00
L
et
0c¢
691
8914 43 £500
L9t oooyed 0s00
991 0130938 @v00
S9t 33 Jv00
91 000889 400
£91 aivovd 9v00
91
541 33 sv00
094 8.£v88 7508
651 0180v8 4700
85}
(413
9G4
S6L
751 00v1£v9Z 8£00
€St 8S ¥£00
A 00Zigv9Z 9700
LS 85 §£00
[008£83 2700
343 06 1£00
81 D0zE8d 3700
[As} 06 azoo
9%] ----849 vzZ00
SvL
v
£y
INIT rgo 201

¥3T9HISSY OUIVKH 981/88/(8/9808

189

Operating Instructions

GNNO4 S¥O¥Y¥3 ON ‘313TdWOI ATFWISSY

_aN3 582

SANI WY¥a0dd NdI %2 ----
~ 187
dON3 SSIYAAY TWIISAHd 087

8313TdWOD UOISJBAUB)S 13¥ 677 £ 1vDD

ds dod 871 S 0voo

X4 d0d 7z 85 4600

xg dod 977 35 3600

sua3s1Bay jussund 340358y X2 d0d Y24 6% 0600

ssa4ppe 30 pJom ubtu woeQ Ind! XY ZL+[dd1:5S AOW vz 209%68 v¥600

553JPPE 30 DJOM MOT %2BQ Ind‘ XD‘Di+[d91:SS AOW £227 903768 (600 |

234q ubiy aseq 03 AJued ppy! 00‘xy Jay 1244 a000SE ¥600

[] YHS 172 8300 2600

] UHS 0zz 8300 0600

Sl UHS 1334 8300 3800

Japutewas juawbas 1snlpyt L ¥HS E1%4 8300 2800

H3 ‘Y AOH 4% £)v8 9800

Xy xy HOX 91 0JrE 8800

135340 03 PJOM MOT 35EQ PPyt XYXx2 aay Siz §2£0 9800

Lixy THS 1434 0310 9800

Lixy THS €17 0310 Z800

Loy THS iz 0310 0800

91 Ag juswbas ArdiiTnd! 1ixw THS 3% 0310 3400

X3 ¢xy AOW oz £288 2400

Ja3utod Teulbruo jo 3ued 385330¢ 0L+0d8):55°XD AOH 602 vO3788 6400

4ajutod teurbrao jo 1.ed juawbast zi+rd91:ssxa AOH 802 203538 9400

%0BIS uc suajaweded D} S53V0Y!: ds‘dg AOW L0z 03498 v/0D

X3 HSNd 907 1S £400

X8 HSNd s07 £S5 Z/00

Xy HSNd yQz 0G 1400

s4a351b684 jJuasund aaest dd HSNG £0Z SG DLO00

¥YIN J0¥d SSIWAAY T WIISAHY 07 0400
e B e dn e bt Rttt 1 L0z
| 553Jppe Teoi1sAud 31aG-yz 03 Jajutod 31a3sido/3uawbas jo uorsuidAuoy (¢ 0oz
B T B e e e e 661
861

1uads34d ST %S} 434yl0 ou se ‘Awungé 1M L6} ¥4 4900
i o e —————ee e o 961
} 843U 3SBI Nd) 434yl0UB JO uUDTIINI3Xx3 3JJBIS |°¢ Ghi
P e mmmmm e e m oo rel

35uN0S INET r90 207

9 39vd 98/81/50 95:00:v) 31dHYX3 HUHIOUd TINNYHD £ SZZ8EYS ¥3T9HIS5Y O¥IVM 98 1/88/(8/9808

190

Operating Instructions

11.2 Operating in Local Mode

In local mode the SAB 82257 is connected to the local bus together with a processor
(SAB 8086/8088/80186/80188/80286). In this mode all the buses and interface components
are shared by the SAB 82257 and the processor. Only one of the two (or more) may use the
local, and hence the memory and I/O bus, at a time. The arbitration between the different bus
masters on the local bus is done using HOLD/HLDA lines (SAB 82257 working with
SAB 80186/80188/80286 processors) or the RQ/GT line (SAB 82257 working with SAB 8086/
8088 processors).

To distinguish between I/0O bus accesses and memory bus accesses, the M/IO parameter in
the channel command is used. The M/IO parameter controls these accesses for source and
destination separately.

To allow the SAB 82257 to transfer channel programs from memory space to I/O space for
later execution starting there, it is also necessary to switch dynamically from memory bus to
I/0 bus for organizational accesses to the channel programs.

Therefore the MEMBUS/IOBUS information is included in the general START channel
command. Note that each channel can have the organizational blocks in memory or 1/0
space.

The memory bus need not have the same physical bus width as the I/0O bus. In an 8-bit
Multibus system, the I/O bus can have 16-bit width, or — more often — in a 16-bit Multibus
system the I/O bus can be 8 bit. In the general mode register (GMR), two bits indicate the
physical bus widths:

® MEMBUS (bit 0) and
® I0BUS (bit 1).

MEMBUS is used for memory bus accesses and IOBUS for I/0 bus accesses. Thereby the
SAB 82257 compares the logical bus width (indicated in the type 1 channel command for
DMA transfers) with the physical width of that bus which is used.

Example

— If the physical bus width is 8 bit and the logical bus width is 16 bit, byte transfers will be
performed automatically.

— If the physical bus width is 16 bit and the logical bus width is 8 bit, byte transfers are
performed in that data bus half which is addressed by the least significant address bit.

Logical bus width pertains to DMA transfers only. All organizational transfers are performed
in bytes or words depending on the physical bus width as indicated by MEMBUS and IOBUS.

MEMBUS always defines the physical bus width of the bus the SAB 82257 shares with the
processor. Thus the width of the communication between CPU and SAB 82257 does not
depend on the physical width of the IOBUS.

11.3 Operating in Remote Mode

In remote mode the SAB 82257 is interfaced to the CPU via the system bus. The SAB 82257 is
the only master of the local/resident bus. The CPU can communicate with the SAB 82257 via
the slave interface connected to the system bus.

191

Operating Instructions

When the SAB 82257 is in remote mode, the HOLD/HLDA sequence is redefined as follows:

® For access to the resident bus the SAB 82257 does not generate HOLD and starts the
access without receiving HLDA.

@ For all accesses to the system bus the SAB 82257 generates HOLD before getting on to
the local bus. Only when receiving HLDA, it starts the bus cycle and occupies its local bus.
This ensures a deadlock-free arbitration of the local bus.

If the Multibus is used as system bus, the SAB 82289 should be used as bus arbiter. Then
HOLD from the SAB 82257 is directly connected (inverted) with the SO input of the
SAB 82289, thus initiating the Multibus arbitration. After Multibus arbitration, the SAB 82257
uses the (inverted) AEN signal from the SAB 82289 as HLDA input. While waiting for HLDA,
the SAB 82257 can always be accessed as a slave by the CPU.

The SAB 82257 has to distinguish between resident bus accesses and system bus accesses.
This is controlled by the M/IO parameter in the channel command for both source and
destination separately. In remote mode therefore memory accesses are treated as system
bus accesses and I/0 accesses are treated as resident bus accesses. Externally, the HOLD
signal can be used for distinction between accesses to system or resident space.

In remote mode the SAB 82257 has also to decide whether organizational accesses should
be performed on the resident bus or on the system bus.

To allow the SAB 82257 to transfer channel programs from system space to resident space
for later execution from there, it is necessary to switch dynamically from system bus to
resident bus for organizational accesses. Therefore the SYSBUS/RESBUS information is
included in the general START channel command. Each channel can have the organizational
blocks in system or resident space, so the SYSBUS/RESBUS distinction made for remote
mode is used the same way as the M/IO distinction in local mode.

The resident bus need not have the same physical bus width as the system bus. In an 8-bit
Multibus system the resident bus can have 16 bit width, or — more often —in a 16-bit Multibus
system the resident bus can be 8 bit. In the general mode register (GMR), two bits indicate
the physical bus widths:

® SYSBUS (bit 0) and
® RESBUS (bit 1).

SYSBUS is used for all system bus accesses and RESBUS for resident bus accesses. This
also means that the SAB 82257 compares the logical bus width (indicated in the type 1

channel command for DMA transfers) with the physical width of the bus used.

If the physical width is 8 bits and the logical bus width is 16 bits, byte transfers are performed
automatically. If the physical width is 16 bits and the logical bus width is 8 bits, byte transfers
are performed on that data bus half which is addressed by the least significant address bit
(same as in local mode, but there SYSBUS is used for memory bus width and RESBUS for I/O
bus width indication).

Logical bus width pertains to DMA transfers only. All organizational transfers are performed
in bytes or words depending on the physical bus width as indicated by SYSBUS and
RESBUS. In case of an 8-bit physical bus the SAB 82257 uses the lower half of the data bus.

192

Operating Instructions

In remote mode as well as in local mode, SYSBUS (MEMBUS) always defines the physical
bus width of the bus the SAB 82257 shares with the CPU. Thus the width of communication
between CPU and SAB 82257 is independent of the physical width of the resident bus.

The CPU is only allowed to occupy the local bus if this bus is not accessed by the SAB 82257.
Therefore the CPU has to wait until the current local bus cycle is terminated. In remote mode
the chip select input CS serves as attention signal which causes the SAB 82257 to release the
local bus after the current bus cycle. The SAB 82257 indicates the released state by means of
the BREL signal. (The BREL signal is used to start the local bus cycle for the CPU).

Special logic is required for systems which need a CPU access to other devices on resident
bus. In such systems, the CPU needs not only access to the SAB 82257 itself but also to its
resident bus.

Such a CPU access to the resident bus is organized with the SAB 82257 operating as resident
bus arbiter:

® The chip select input CS of SAB 82257 is used like a HOLD request input, and
® the BREL output exactly functions as a HOLD output.

The BREL signal will be active only as long as CS is active. Therefore CS should only be of
minimum length, for example the length of a Multibus read or write command.

The bus release signal BREL uses the SAB 82257’s M/IO pin since the M/IO function is not
needed in remote mode. After reset, this pin is in tristate and an external pullup resistor

forces it high. Aithough reset forces the SAB 82257 into locai mode, the CPU can now
communicatc with the SAB 82257 because

® BREL switches the latches and transceivers of the Multibus interface to a direction from
Multibus to the SAB 82257’s local bus and
® the SAB 82257 does not execute any bus cycle by itself until a channel is started.

Thus the CPU can load the SAB 82257’s general registers beginning with the general mode
register (GMR). If the RM bit is set in GMR, the SAB 82257 switches to remote mode and the
M/IO pin gets the BREL function.

11.4 Connecting Peripherals

Each of the 4 independent channels of the SAB 82257 has three dedicated control lines (see
figure 86):

® EOD (end of DMA) line, a flexible bidirectional line used as an external terminate line to
stop running DMA or as an interrupt signal to the CPU or a peripheral announcing the end
of a DMA operation, and the conventional

® DREQ (DMA request) and

® DACK (DMA acknowledge) lines used for synchronized DMA transfer.

The DREQ and DACK signals are directly compatible with most peripheral controller circuits.

193

Operating Instructions

The following list shows some examples of peripheral controllers manufactured by Siemens
or Intel Corporation:

Intel Siemens

8271 SAB 1791
8272" SAB 1793
8273 SAB 1795
8274 SAB 1797
8275 SAB 2791
8291"| SAB 2793
8294 SAB 2795
8295 SAB 2797

" These devices react on the leading edge of the DACK signal. The other devices use the
leading edge of the command to reset the request.

For using the above circuits in conjunction with the SAB 82257 in 286 mode, the bus cycle
must be lengthened to guarantee the minimum command pulse width.

Lengthening must be performed with a certain number of T-states, before READY is issued
by the peripheral or a special TTL logic. In this case also the falling edge of DREQ can be
delayed by up to the same number of T-states.

Figure 86
Connecting the SAB 82257 to Peripherals

SAB 82257
Chan.0
Chan.1
| OREQ b —————— _
Peripheral EOD
Controller BACK Chan2
]
Chan.3

194

Operating Instructions

Anyhow, to be sure that with one request only a single data transfer is executed (no
continuous request) certain timing rules must be considered. For a correct operation the
maximum delay time t,,,,, from the leading edge of command to the falling edge of DREQ of
the peripheral controller must satisfy the formula:

® 286 Mode
tomax = — torr — tsy + N X 2 x tew

® 186 Mode
tomax = 1.5 X toik — tper — tsy + N X te

tek = Period of CLK; 1,5 x tex means (1 + duty cycle) X tek
toer = Command output delay in bus controller or SAB 82257 (see pin ratings)
tsy = Setup time of DREQ (falling edge)

The bus cycle can be lengthened by a number of n T-states (ready wait states). By selecting a
sufficient number n, the use of comparatively slow peripheral controllers is possible. By
increasing the number n the transfer rate is reduced. Therefore another method can be used
by peripherals:

The request (DREQ) is reset with the leading edge of DACK (see note " of the table on page
194) because the DACK signal appears earlier than the command. In this case the maximum
delay time tpp,,..« from the leading edge of DACK to the falling edge of DREQ must satisfy the
formula (not allowed for continuous requests for more than one single data transfer):

® 286 Mode
toomax = 2 X tewk ~ toper — tsy + N X 2 X te

® 186 Mode

toomax = 2.5 X tok — toper — tsu + N X tok
tooeL = DACK output delay
The EOD signal, used by the SAB 82257 as well as by the peripheral, is compatible with most

peripheral controller circuits. As an input as well as an output EOD is a pulse signal of two T-
states’ length.

11.5 Performance
11.5.1 Latencies

Preliminaries

1. The latency calculation described in this section does not take into account
— setup delay times,
— hold delay times,
— output delay times and
~ delay times due to CPU accesses to the SAB 82257 in remote mode, which are specified
in the data sheet. These delay times should be added to get the final latency figures.

195

Operating Instructions

2. The following is assumed:
— The channel which latencies are calculated for, currently has the highest priority and
will not be blocked by other still higher priority requests.
— The command block and the data chain lists have even addresses.
— Control space accesses will be performed with a 16-bit bus.
3. In this section all timings are in units of T-states = 125 ns for standard 8 MHz systems.
4. If bus cycles are involved then
— W = wait time during bus cycle due to slow devices (ready wait states).
— Tg = time for one bus transfer:
for 186/188/86/88 system Tz = 4 + W
for 286 system Tg = 2 + W

DMA Request Processing in Local Mode

Figure 87 shows the functional flow from DREQ to DACK in local mode with the major
elementary steps which are processed, and gives the timing for all these steps.

It as assumed that organizational and other unsynchronized transfers (e.g. prefetch) have
been completed before the processing of DREQ starts.

DMA Request Processing in Remote Mode
Figure 88 shows the functional flow from DREQ to DACK in remote mode as described

above.

Setup
® General Command: START command

Parameter Limit values
min. typ. rrEXA -
Write to Setup 6.5 8 9.5
. HOLDHLDA Sequence

At this stage the START command is ready for the start of the channel setup routine.
® Channel Setup
7XTg+4+1t
1 x Tg + 2, if list chaining enabled
t= 3 X Tg + 2, if linked list chaining enabled.
0, in other cases.

196

Operating Instructions

Egure 87

DREQ to DACK Latency in Local Mode

HOLD ?

45

— HLDA 1

DREQ T

\

3 HOLD-HLDA =0

{OLD'HLDAﬂ

25

Delays are given in terms of T-states (286 mode)

Cycle | 05
Start

(T0)

Limit values

Parameter

min typ. max.
DREQ to HOLD 2.5 3 3+ wW"?2
HOLD to HLDA 1 45 16 + 5 W¥
HLDA to Cycle Start 1.5 2.5 2.5
DREQ to Cycle Start 2.5 4 + wW"
(without bus arbitration)
Cycle Start of DACK 0.5 0.5 0.5

" Single bus cycle running: 1 + W
Unseparable bus cycles running:

— Word access at odd address: 3 + 2W (same for pointer transfer)

% General burst counter = 0: 2 x GDR

HLDA = 1, HOLD = 0 : Wait for HLDA = 0

HLDA lost : 2

¥ Assumed repeat and lock prefixes are not combined

197

Operating Instructions

Figure 88
DREQ to DACK Latency in Remote Mode
HOLD T 2+2BC_{ 1 DA r 2
HOLD-HLDA=0
System
Bus
Request
0 O\HOLD-HLDA=1
1.5 1 Cycle 0.5
OREQ r Start
0 1, HOLD-HLDA=0 (1)
Resident
Bus HOLD=0
Request HLDA=1
13\ HoLD=1"1
HOLD l HLDA l
Y 2 Y 2
Delays are given in terms of T-states (286 mode)
BC=Bus cycles
Parameter Limit values
min. typ. max.
DREQ to HOLD Set 2.5 3 3+wWh?
HOLD Set of HLDA Set 2 BC 2 + 2BC 3
HLDA Set to Cycle Start 1.5 2 2.5
DREQ to HOLD Reset 1.5 3 55 + W"
HOLD Reset to HLDA Reset 1 2 2
HLDA Reset to Cycle Start 15 2 2.5Y
DREQ to Cycle Start 2 35 5+ W
(without bus change)
Cycle Start to DACK 0.5 0.5 0.5

Y Single bus cycle running: 1 + W

Unseparable bus cycles running:

— word access at odd address: 3 + 2W (same for pointer transfer)
2 General burst counter = 0 : 2 x GDR

HLDA = 1, HOLD = 0 : Wait for HLDA = 0

HLDA lost : 2
¥ Bus arbitration and currently running bus transfers.

BC = Multibus clock cycle.

198

Operating Instructions

Data Chaining

For data chaining operation latencies occur when the data block is changed. The latencies
are

® for list chaining: 3 x Ty + 6

® for linked list chaining: 5 X Tg + 6

Termination and Command Chaining

® Type 1 Command
— Termination
Store channel status register (CSR) and calculate next command pointer: 1 x Tg + 6
— Chaining
Same as in the setup routine.
® Type 2 Command
— Chaining
Channel command register (CCR) load: 1 x Ty
CCR decode and execution: 2 X Tg + 2
Additionally for relative jump: 4
Additionally for absolute jump: 4

11.5.2 Transfer Rates

The following table illustrates the maximum rates that can be achieved in different classes of
DMA operation. Note that the transfer rates are not effected if the channels alternate.

SAB 82257 in SAB 82257
286 Mode 186 Mode
CLK = 16 MHz CLK = 8 MHz

Single—.Cyclréw DMA Tranéféf -

— Word Transfer 8 Mbytes/s 4 Mbytes/s

— Byte Transfer 4 Mbytes/s 2 Mbytes/s

Two-Cycle DMA Transfer

— Word/Word Transfer 4 Mbytes/s 2 Mbytes/s

— Byte/Byte Transfer 2 Mbytes/s 1 Mbyte/s
Byte/Word Transfer 2.66 Mbytes/s 1.33 Mbyte/s

Note

The transfer rate figures for data chaining depend on the block length of each chained data
block and on the organizational time of chaining in relation to the whole block length.

199

Device Specifications

Device Specifications

SAB 82257

Preliminary

High-Performance DMA Controller
for 16-Bit Microcomputer Systems

SAB 82257 8 MHz
SAB 82257-6 6 MHz

® High-performance 16-bit DMA controller
for the 16-bit family processors
SAB 80286, SAB 80186/188, SAB 8086/88
® 4 independent high-speed DMA channels
® Adaptive on-chip bus interface for
direct connection to processors
® Standalone operation for modular systems
® Programmable bus loading
® Transfer rates up to 8 Mbytes/s (8 MHz system)

® 16 Mbytes addressing range

® 16 Mbytes maximum block size

® Command chaining for automatic processing

® Automatic data chaining (scattering/gathering)
for flexible data structures

® Single and double cycle transfers

® Automatic assembly/disassembly of data

® Memory-based communication scheme with CPU

Logic Symbol
(LK

%

RESET

$

READY

DREQ3 :
DREQO -

DMA DA(K3<‘_

Interface) HACK —]

o
I

Vel ———a—

L

GND -

SAB
82257

- Address
Bus

-

- Data
— Bus

|

Control System
K >Status Interface
Arbitration
. T
— RD
e WR)

The SAB 82257 is a DMA (direct memory access)
controller designed especially for the 16-bit
microprocessors SAB 80286 and SAB 8086/186/
88/188. In addition, the operation with other pro-
cessors is supported by the remote mode. It has
4 independent DMA channels which can transfer
data at rates up to 8 Mbytes/second at 8 MHz

clock in an SAB 80286 system or up to 4 Mbytes/
second at 8 MHz in an SAB 8086/80186 system. This
great bandwidth allows the user to handle very fast
data transfer or a large number of concurrent
peripherals. The device is fabricated in advanced
+5V N-channel Siemens MYMOS technology and
packaged in a 68-pin package.

203

SAB 82257

Modes of Operation, Adaptive Bus Interface

Like the advanced DMA controller SAB 82258, As a result of this, a bus compatibility with identical
the SAB 82257 has been defined to work with all timing is attained with processors SAB 80286,
16-bit processors, i.e. SAB 80286, SAB 80186/188 SAB 80186 and SAB 8086. A compatibility with

and SAB 8086/88 without additional support and the 8-bit bus versions of these processors SAB 8088
interface logic. Hence the local buses of above and SAB 80188 is also guaranteed by defining the
processors are different in signals, functions physical bus width of the SAB 82257 (per software)
and timings, the SAB 82257 has an adaptive bus as 8 bits. The only difference in operation with
interface to meet the different requirements of SAB 8086 or SAB 80186 is that for SAB 8086 the
these local buses. HOLD pin functions as RQ/GT line (if HLDA is held

high on reset).

Logic Symbol in 286 Mode Logic Symbol in Remote Mode
(LK RESET READY (LK RESET READY
1 I
from SABB2286 | . A23 AB from SABB2284 | A23 AB
K= a1 a0 ! AT A
— R . |
DREQ3 . K> o 00 DREQ3 — Bus Ko oo
OREQO v Ui DREQOD
. Bus ¢ _ i
. 5
DACK3 [L -oBHE DACK3 g SAB I - BF
< LE o as | | B R wm oo
SACKG B n 280 Mode) _ DACKO & (in Remote Mode)! !
e] e ; -5
E003 =0 €003 | .
e <:> - = BREL
e~ J> f = HOLD EODO / Arbrtration / - gDLD
N Arbitrahon
= HLDA = HLDA
Slave |~ 14y Slave = ©
Intertace [|+ RO Interface ¢ |- RO
Power Supply 1 - Wl Power Supply « f= WR
ower Uy
])]
T T
GND VCC GND vCC

Logic Symbol in 186 Mode Logic Symbol in 8086 Mode
Lr RESE' SREADY AREADY Lk RESET GREADY AREAUY
i i | | | ‘

I B Lt i
from SABBOTB6 A9/S6 from SABB0BS | . awise
: AW/S3 | '—:‘>Awsz
A15.AB \ ATS._A8
DREQ3 AT . AO | AT A0
— | OREQ3 o)

DREQD | Q i - ;‘
. Bus ¢ CDBA;;S..ADO DREGO . s [G ADTS . 4DC
< [D ; z X - « BHE

DACK3 , | § sa8 | -7 DACKI e 5B -

N G - 75 L) . £ st P

DACKO BuoioMode) [T wp DACKG [T B

e b ALE |2 - ALE

03 N | - OUR 003 oy - OUR

FO00 nd e N oo) - BEN

- e -~ RA/GT
Arbitration \ | Artutration ¢ | HLDA
Slave ¢ Sve (f=— T3
interface”) interface | |-~ RT
Power Supply | Power Supply |- =
T T 1 T T] 1T
T T
GND vCC GNO vCC

204

SAB 82257

The SAB 82257 can also be operated in remote or The SAB 82257 is programmed to a specific mode of
standalone mode, in which case it is not coupled operation by applying defined logic levels to certain
directly to a processor. In remote mode, the pins during reset and by setting the status of several
SAB 82257 can be operated as sole bus master in a control bits (see figure below).

multimaster environment.

—
Mode Selection

SAB 82257
e Pin \\
1. A 23/AREADY ~0
on
/'/ RESET
SAB 80286 SAB 80186
Bus Bus
/ N\
y \ /N
/" RM \\ HLDA ™
in GMR Pin
\0 1/ on \0
y \ © RESET \
\ \
\.
\
Remote 286 8086 186
Mode Mode Mode Mode
| Bus Width
J =8Bit
8088 188
Mode Mode

205

SAB 82257

Pin Definitions and Functions

Some pins of the SAB 82257 serve for different description of the general pin functions as well as
purposes according to the different modes of bus the mode-specific pin functions is given in the
operation. The table below summarizes the pinouts ~ following sections.

of the SAB 82257 in the various modes. A detailed

Pin Names and Functions

Pin 286 Mode Remote Mode 186/8086 Mode
Symbol Input (1) Symbol Input (1) Symbol Input (1)
Output (O) Output (O) Output (O)
16 HOLD (e} HOLD (0] HOLD or 0 (186)
RQ/GT 1/0 (8086)
17 HLDA | HLDA | HLDA |
1 BHE 1/0 BHE 170 BHE 1/0
14 M/10 0 BREL 0] S2 0]
11 S1 1/0 S1 [0} S1 1/0
13 S0 1/0 S0 (0] S0 1/0
8 CcS | csS | CcS |
2 RD | RD | RD 1/0
3 WR | WR | WR 1/0
10 READY | READY [SREADY |
59 A23 (0} A23 (6} AREADY |
58 A22 (e} A22 (¢} ALE [0}
57 A21 (0] A21 (0] DT/R 6]
56 A20 (0] A20 (6] DEN (0]
55 A19 (0] A19 (0] A19/56 0]
54 A18 (0} A18 (o} A18/S5 (0]
53 A17 0] A17 (e} A17/S4 0
52 A16 0] A16 0] A16/S3 0]
51 A15 (0] A15 o} A15 0
50 A14 (0] A4 o} Al4 0]
49 A13 (0] A13 (0} A13 (¢]
48 A12 (0] A12 (0] A12 (0]
47 A1l (0] A1 (0] A1 (0]
46 A10 (0] A10 (6] A10 (0]
45 A9 0 A9 6] A9 (0]
44 A8] A8 0] A8 0
42 A7 1/0 A7 1/0 A7 1/0
41 A6 1/0 A6 1/0 A6 1/0
40 A5 1/0 A5 1/0 A5 1/0
39 A4 1/0 A4 170 A4 1/0
38 A3 1/0 A3 1/0 A3 1/0
37 A2 1/0 A2 1/0 A2 1/0
36 A1 1/0 A1l 1/0 Al 1/0
35 A0 1/0 A0 1/0 A0 170

206

SAB 82257

Pin Names and Functions (cont’d)

Pin 286 Mode Remote Mode 186/8086 Mode
Symbol Input (1) Symbol Input (1) Symbol Input (1)
Output (O) Output (O) Output (O)
18 D15 1/0 D15 1/0 AD15 170
20 D14 1/0 D14 1/0 AD14 170
22 D13 1/0 D13 1/0 AD13 1/0
24 D12 170 D12 1/0 AD12 170
27 D11 1/0 D11 170 AD11 1/0
29 D10 1/0 D10 1/0 AD10 1/0
31 D9 1/0 D9 1/0 AD9 1/0
33 D8 1/0 D8 1/0 AD8 1/0
19 D7 1/0 D7 1/0 AD7 170
21 D6 170 D6 170 AD6 1/0
23 D5 1/0 D5 1/0 AD5 170
25 D4 1/0 D4 1/0 AD4 1/0
28 D3 170 D3 1/0 AD3 1/0
30 D2 1/0 D2 170 AD2 1/0
32 D1 1/0 D1 1/0 AD1 1/0
34 DO 1/0 DO 170 ADO 1/0
7 DREQO | DREQO [DREQO |
6 DREQ1 1 DREQ1 | DREQ1 |
5 DREQ2 [DREQ2 ! DREQ2 |
4 DREQ3 | DREQ3 | DREQ3 |
61 DACKO (0] DACKO 0] DACKO (0]
62 DACK1 [0} DACK1 0] DACK1 6]
63 DACK2 (0] DACK2 0] DACK2 o
64 DACK3 (e} DACK3 (¢} DACK3 (0]
65 EODO 170 EODO 1/0 EODO 170
66 EOD1 1/0 EOD1 1/0 EOD1 170
67 EOD2 1/0 EOD2 170 EOD2 170
68 EOD3 1/0 EOD3 1/0 EOD3 1/0
15 RESET | RESET | RESET |
12 CLK | CLK | CLK |
9,43 GND (Ground) GND (Ground) GND (Ground)
26,60 VCC (Power VCC (Power VCC (Power
Supply) Supply) Supply)

207

SAB 82257

Pin Configuration

PLCC 68 PLCC 68
Bottom view Top view
51 3
isininisisisisisiaisininialisi
52 3
SAB
o 82257
68 8

UououUoouuouoooooouoaT
1 17

Pin No.1 Mark -~

208

SAB 82257

Pin Definitions for All Operating Modes

Symbol

Pin

Input (1)
Output (O)

Function

us]
mi

110

BUS HIGH ENABLE

Indicates transfer of data on the upper byte of the data bus,
D15to D8. Eight-bit oriented devices assigned to the upper
byte of the data bus would normally use BHE to condition
chip select functions. BHE is active low and floats to
tristate off when the SAB 82257 does not own the bus.

BHE and A0 encodings

|

HE A0 Function

0 Word transfer (D15-D0)

1 Byte transfer on upper half
of data bus (D15—-D8)

1 0 Byte transfer on lower half
of data bus (D7-DO0)
Odd-addressed byte on 8-bit
bus (D7-D0)

o © |

-
-

READ

This command in conjunction with chip select enables
reading out of the SAB 82257 register which is addressed
by the address lines A7 to AO. This signal can be asynchro-
nous to the SAB 82257 clock.

WRITE

This command is used for writing into SAB 82257
registers. This signal can be asynchronous to the
SAB 82257 clock.

DREQO-
DREQ3

4.7

DMA REQUEST (0 TO 3)

These input signals are used for synchronized DMA
transfers. These signals can be asynchronous to the
SAB 82257 clock.

CHIP SELECT

Is used to enable the access of a processor to SAB 82257
registers. This access is additionally controlied either by
bus status signals or by the read or write command
signals. Chip select can be asynchronous to the SAB 82257
clock.

CLK

CLOCK

It provides the fundamental timing. In 286 mode and
remote mode it must be two times the system clock.

It can be directly connected to the SAB 82284 CLK output.
Itis divided by two to generate the SAB 82257 internal
clock. The on-chip divide-by-two circuitry can be
synchronized to the external clock generator by a low-to-
high transition on the RESET input, or by first high-to-low
transition on the status inputs S0 or S7 after reset. In
186/8086 mode no internal prescaling is done.

209

SAB 82257

Pin Definitions for All Operating Modes (cont’d)

Input (1)

Symbol Pin Output (O) Function
S0,S1 11,13 1/0 BUS STATUS LINES (0, 1)

These signals control the support circuits. The beginning
of a bus cycle is indicated by ST or S0 or both going active.
The termination of a bus cycle is indicated by all status
signals going inactive in 186 mode or bus ready signal
(READY) going active in 286 mode. The type of bus cycle is
indicated by 50, ST and 52 (in 186 mode) or M/IO (in

286 mode). SZ and M/10 have the same meaning but in
186 mode the S2 signal can be active only when at least
one of 57 or S0 is active, whereas in 286 mode the M/10
signal is valid with the address on the address lines. The
SAB 82257 can generate the following bus cycles by
activating the status signals (and M/IO in 286 mode):

M/TO|ST |SO0 | Cycle Type
or S2
0 0 0 Read I/0O-vector
(for multiplexer channel)
0 0 1 Read from 1/0 space
0 1 0 Write into 1/0 space
0 1 1 No bus cycle, does not occur
in 186 mode
1 0 0 Does not occur
1 0 1 Read from memory space
1 1 0 Write into memory space
1 1 1 No bus cycle

When the SAB 82257 is not the master of the local bus the
status signals are used as inputs for detection of
synchronous accesses to the SAB 82257. The following
table shows the bus status and CS, signals and their
interpretation by the SAB 82257.

CS |S1 |SoO Description
1 X X SAB 82257 is not (no action)
selected
0 0 0 No SAB 82257 access (no action)
0 0 1 Read from an
SAB 82257 register
0 1 0 Write into an
SAB 82257 register
0 1 1 No bus cycle (note 1)

Note 1: SAB 82257 is selected but no synchronous access
is activated. In this case the SAB 82257
monitors RD and WR signals for detection of an
asynchronous access.

RESET 15 | SYSTEM RESET

An activation of the reset signal forces the SAB 82257 to
the initial state. The reset signal must be synchronous
to CLK.

210

SAB 82257

Pin Definitions for All Operating Modes (cont'd)

; Input (1) :

Symbol Pin Output (0) Function

DACKO- 61-64 [0} DMA ACKNOWLEDGE (0 TO 3)

DACK3 Acknowledges the requests on the related DREQn signal.
Itis activated when the requested transfer(s) is (are)
performed.

EODO- 65—-68 1/0 END OF DMA(0 TO 3)

EOD3 These signals are implemented as open drain output

drivers with a high impedance pullup resistor and thus can
be used as bidirectional lines.

As outputs the signals are activated for two system clock
cycles atthe end of the DMA transfer of the corresponding
channel (if enabled) or they are activated under program
control (EOD output or interrupt output).

If the signals are held internally high but forced to low by
external circuitry, they act as “End of DMA"' inputs. The
current transfer is aborted and the SAB 82257 continues
with the next command.

Additionally, a special function is possible with the EOD2
pin: this pin can also be used as common interrupt signal
for all 4 channels. In this mode this signal is not an open
drain output but a pushpull output (output only). The other
EOD pins may be used as EOD outputs/inputs as described

above.
vCcC 26,60 POWER SUPPLY (+5V)
GND 9,43 GROUND (0V)

211

SAB 82257

Pin Definitions for 286 Mode and Remote Mode

In 286 mode the SAB 82257 bus signals and

bus timings are the same as for the SAB 80286
processor. Additional features of the SAB 82257
require a slight change in pin definitions. The
processor can access internal registers of the
SAB 82257. Therefore the bus signals must
support these accesses. This means that some
of the bus control signals must be bidirectional
and some additional bus control signals are
necessary. All additional pins and their functions
are listed below.

In remote mode most of the bus signals are the
same as in 286 mode. Pin 14 (M/10) serves as BREL
output. The HOLD/HLDA arbitration in remote
mode is used only for system bus accesses, the
resident bus is accessed directly.

The CS input additionally requests access to the
local bus of the SAB 82257. These accesses are
enabled through the BREL output after the

SAB 82257 has released the bus.

Pin Configuration in 286 Mode and Remote Mode

Component Pad View — As viewed
from underside of component
when mounted on the board

PC Board View — As viewed
from the component side of
the pc board

NP 200 cnama—o
g CqCCT < gL €< LI
& ?

A% 52 3100

A7 D8

A® D1

A9 D9

AN po2

A pDw

A22 pb3

A3 om

V(C Ve

DACKO ahIy

DACK b D12

DACK 2 gDs

DACK3 hon

£000 poe

E0D1 pDw

EOD2 Qo7

EOD3 pots
<oz 5 Sasa P Saog Zha<
S50WE « [Re 2288 in No.1 Mark w 2828 o En23
EER PETAETg 4 EEzel ERIGEEEEw 5E|a SmEESS

= =

212

SAB 82257

Pin Definitions for 286 Mode and Remote Mode (cont’d)

Input (1)

Symbol Pin Function
v Output (O)
READY 10 | BUS READY
Terminates a bus cycle. Bus cycles are extended without
limit until terminated by READY low.
READY is an active low synchronous input requiring
setup and hold times relative to the system clock to be
met for correct operation.
M/I0 14 (0} MEMORY/ 170 SELECT
(286 mode) In 286 mode, pin 14 is used to distinguish between
memory and |/O space addresses.
BREL 14 o BUS RELEASE
(remote In remote mode pin 14 is used to indicate when the
mode) SAB 82257 has released the control of the local bus.
HOLD 16 (6} BUS HOLD REQUEST
When true, indicates a request for control of the local bus
(286 mode) or the system bus (remote mode). When the
SAB 82257 relinquishes the bus it drops the HOLD output.
HOLD is connected to the bus arbiter in remote mode.
HLDA 17 | BUS HOLD ACKNOWLEDGE
When true, indicates that the SAB 82257 can acquire the
control of the bus. When it goes low SAB 82257 must
relinquish the bus at the end of its current cycle. HLDA can
be asynchronous to the SAB 82257 clock. HLDA is
connected to the bus arbiter in remote mode.
DO0-D15 18-25, 1/0 DATA BUS (0 TO 15)
27-34 This is the bidirectional 16-bit data bus. For use with an
8-bit bus, only the lower 8 data lines D7-D0 are relevant.
AO0-A7 35-42 1/0 ADDRESS BUS (0 TO 7)
The lower 8 address lines for DMA transfers. They are also
used to input the register address when the processor
accesses an SAB 82257 register.
A8-A23 44-59 (0] ADDRESS BUS (8 TO 23)

Higher address outputs.

213

SAB 82257

Pin Definitions for 186 Mode and 8086 Mode

In 186 mode and 8086 mode the SAB 82257 multi-
plexes the address with data and additional status
lines.

Pins AO to A15 retain their original function while
pins A20 to A23 serve for different purposes (not
used for address in 186/8086 mode).

The RD and WR lines are additionally used as
outputs in 186/8086 mode to support minimum
mode systems.

Note that the HLDA input can be used to force the
SAB 82257 off the bus in 8086 mode, even though
the arbitration is done via the RQ/GT line!

Pin Configuration in 186 Mode and 8086 Mode

Component Pad View — As viewed
from underside of component

PC Board View — As viewed
from the component side of

when mounted on the board the pc board
VAN momamN O
TR IR R R G A R G R
jaininisiaiainiaisisisisisiasiaisinl
@)
A%IS3 52 341 AD0
AVISL O [1AD8
A®/SS [[ADY
A99/S6 [1 AD9
OEN O nAD2
OT/R QO [AD10
ALE d b AD3
AREADY O <AB b ADN
v gO 82257 pvee
0ACKO0 (O [0 AD&
K1 O P AD12
DACKZ O D ADS
DATK3 0 AD13
E000 O b AD6
E001 g P AD %
002 g D a07
EOD3 [68 18 {1AD1S
=
J\UUUUUUUUUUUUUUUUG
= > - - p
8y 2, ggse . Pin No1 Mark 5328 o2 . hos
€ Loimdn ESn EEEEERE EegEEEErsfin Ipmat s
9]
e 2

214

SAB 82257

Pin Definitions for 186 Mode and 8086 Mode (cont'd)

Input (1)

Symbol Pin Output (O) Function

ALE 58 (0] ADDRESS LATCH ENABLE
This signal provides a strobe to separate the address information
on the multiplexed AD lines.

DEN 56 o} DATA ENABLE
This signal is used for enabling the data transceiver.

DT/R 57 (6} DATA TRANSMIT/RECEIVE
This signal controls the direction of the data transceivers. When
low, datais transferred to the SAB 82257, when high the SAB 82257
places data onto the data bus.

52 14 (0] STATUSLINE 2
Signal as for SAB 186/8086/88 processors (see also S1, 50
description in 286 mode).

AREADY 59 [ASYNCHRONOUS READY
The rising edge of this signal is internally synchronized, the
falling edge must be synchronous to CLK. During reset this signal
must be low for entering the 186 mode.

SREADY 10 | SYNCHRONOUS READY
This signal must be synchronized externally. The use of this pin
permits a relaxed system-timing specification by eliminating the
clock phase which is required for resolving the signal level when
using the AREADY input.

CLK 12 [SYSTEM CLOCK
This is the input for the one time system clock. No internal
prescaling is done.

ADO— 18-25 1/0 ADDRESS/DATA BUS (0 TO 15)

AD15 27-34 Lower address and data information is multiplexed on pin ADO to
AD 15. Additionally the demultiplexed address information is

A0-A7 35-42 1/0 available on address pin A0 to A15.

A8-A15 44-51 (0]

A16/S3- 52,55 [0} ADDRESS BUS (16 TO 19) / STATUS LINES (3 TO 6)

A19/S6 The higher address bits are multiplexed with additional status
information.

HLDA 17 | BUS HOLD ACKNOWLEDGE
When true, indicates that the SAB 82257 can acquire the control of
the bus. When it goes low the SAB 82257 must relinquish the bus
at the end of its current bus cycle. HLDA can be asynchronous to
the SAB 82257 clock. In 8086 mode, HLDA can be used to force the
SAB 82257 off the bus.

HOLD 16 (0] BUS HOLD REQUEST

(186 mode) When true, indicates a request for control of the bus. When the

SAB 82257 relinquishes the bus, it drops the HOLD output.

RG/GT 16 1/0 REQUEST/GRANT

In 8086 mode the HOLD output acts as REQUEST/GRANT line.
The REQUEST/GRANT protocol implements a one-line communi-
cation dialog required to arbitrate the use of the system bus
normally done via HOLD/HLDA.

The RG/GT signal is active low and has an internal pullup resistor.

215

SAB 82257

Functional Description

General

The SAB 82257 is an advanced general-purpose
DMA controller especially tailored for efficient high-
speed data transfers on an SAB 80286 as well as on
an SAB 80186/188 or SAB 8086/88 bus.

It supports two basic operating modes:

— local mode (tightly coupled to a processor) and
— remote mode (loosely coupled to a processor).

In the first case the SAB 82257 is directly coupled
to the CPU and uses the same system support/
control devices as the CPU (see figure a) below).
This mode is possible with the above-mentioned
processors.

As a second basic operating mode a remote
(standalone) mode is supported (see figure

b) below). Here the SAB 82257 has his own sets of
bus interface circuits and thus can dispose of its
own local bus. This allows the DMA controller to
work in parallel with the main CPU and therefore
overall system performance could be increased.
Besides, this mode is very useful for the design of
modular systems and allows connecting the

SAB 82257 to any other processor via the system
bus independent of the processor’s unique local
bus.

Basic SAB 82257 Operating Modes

a) Local Mode

0
Ready | a8
—{82081 can
input {82848 ‘ or
/‘ SAB b Status
| 80186/88 |
Clock
Ready SAB
Reset 8086/88
S
Y
S
T
E
M
B
u
S
DACK 0-3 (]
DREQ ¢-3 (—

b) Remote Mode

R —

Bus
Interface

Local| |Bus

C—i i> |lllsl‘:"lrl K:jv

Address
Data

SAB
= 82257 Status

[
-

o
3
m
o

o
&

SYSTEM BUS

216

SAB 82257

The SAB 82257 has fourindependent DMA channels

that can transfer up to 8 Mbytes/s in the single

cycle mode (2 clocks/transfer). In the 2-cycle transfer

mode the maximum rate is 4 Mbytes/s.
Switching between channels induces no time
penalty. Thus the overall maximum transfer rate of

8 Mbytes/s is also valid for multiple channel

operation.

This fast operation is possible because of the
pipelined architecture of the SAB 82257 that allows
the different function units to work in parallel.

Adar

Bus
Control =
Signals

(LK
RESET

Block Diagram of SAB 82257

Central Control

Priority
Logic

T

1
Instruction
Pointer

Registers
-

]

Microinstruction
(ache

Bus Interface Umit Address Unit
Internal Channel Requests
ALY
Address £ : Byte Count Unit
Incrementer k1 '
Pointer ?V"N
ounters
Burst Registers
Counters.
s
Temp o n
Oata internal Data Bus
Registers aN v
s b :
Oata Path . -
Control Data Handler
Channel
Bus Command
Control , Data Registers
v Registers 2 Control
Status
Registers

Instruction Reg
Pipetine
Registers

Channel
= Control
Signals

The SAB 82257 supports two address spaces,
memory space and /0 space, each with amaximum
address range of 16 Mbytes. In addition, the

maximum block length (byte count) is also
16 Mbytes to support applications where large
blocks of data have to be transferred (e.g. graphics).

217

SAB 82257

As source or as destination, four parameters can be
selected independently:

— address space (memory or I/0)

— physical bus width (8 bits or 16 bits),

— logical bus width (same as physical bus width or
8 bits on a 16-bit physical bus)
and

— transfer direction (increasing, decreasing, fixed
pointer or constant value).

If the physical bus width of source or destination

" does not meet the logical bus width an automatic
byte/word assembly (word/byte disassembly)
takes place if this minimizes the necessary transfers.
The same is true if the logical bus widths of source
and destination are different.
Transfers between different address spaces can be
performed within one cycle or in two cycles,
transfers within one address space can be per-
formed only in two cycles.

The transfers can be executed free running or
externally synchronized via DREQ where source or
destination synchronization is possible.

In summary, this very symmetrical operation of the
SAB 82257 gives the user a great amount of design
flexibility.

Adaptive Bus Interface

As shown in the figure on page 3, the SAB 82257 bus
interface has two basic timing modes: the 286 mode
and the 186 mode. In 286 mode the SAB 82257 is
directly coupled to an SAB 80286, in 186 mode to an
SAB 80186 or SAB 80188. For each of these two
modes a slightly different variation exists:

218

— For the 286 mode, the remote mode, where the
SAB 82257 operates as a bus master on the system
bus without being directly coupled to a processor.
In this mode the SAB 82257 can dispose of its own
local bus and the communication with the main
processor is done via the system bus. To enable
access to SAB 82257 registers by the main
processor, the SAB 82257 must release its local
bus. This “local bus arbitration’ in remote mode
is done via the CS and BREL lines.

— For the 186 mode the variation is the 8086 mode
where the SAB 82257 supports the RQ/GT
protocol and thus can be directly coupled to an
SAB 8086 or SAB 8088.

Memory-Based Communication

The normal communication between the SAB 82257
and the processor is memory-based. This means
that all necessary data for atransferis containedin a
command block in memory accessible for CPU and
SAB 82257 (see figure on next page). To start the
transfer the CPU loads one of the command pointer
registers of the SAB 82257 with the address of the
command block and then gives a “start channel
command”. Getting the command the SAB 82257
loads the entire command block from memory into
its on-chip channei reg‘isters and executes it.

On completing the operation, channel status
information is written back by the SAB 82257 into
the channel status word contained in the command
block in memory. The command block structure of
the SAB 82257 is identical with the structure of the
SAB 82258 short command blocks. This allows to
portate SAB 82257 software to the SAB 82258 and
vice versa (in this case with restrictions).

SAB 82257

—

Memory-Based Communication

|

N Type 1 Command o

Source Pointer

j

Destination Pownter

Byte Count
0

Channel Command Block

| wnitten after Every

Channel Stat v
hannel Status / DMA Termination

Memory-Based Communication and Command Chaining

Command Chaining

OMA OMA
SToP JUMP
a) Simplest DMA Operation b) Auto- Reload DMA
oMA
"
“Condrtion” =
_|JUMPt*Con-| xternal Terminate
| diton" Met o
— Byte Count End
OMA
DMA *3
2
sToP
Stop

) Conditional DMA Operation

Command Chaining

Command blocks for any channel can be chained for
sequential execution (see figure above). When the
SAB 82257 has completed the execution of a
command, it automatically increments the
command pointer, and starts to fetch and execute
the next command block until a stop command is
found. As a result a chain of command blocks can
be executed by the SAB 82257 without any CPU
intervention. Due to conditional and unconditional
STOP and JUMP commands, quite complex
sequences of DMA can be executed by the

SAB 82257.

Data Chaining

Data chaining permits an automatic, dynamic
linking of data blocks scattered in memory. There
are two types: list and linked-list data chaining.

If for a DMA the source blocks are to be dynamically
linked during DMA it is called source chaining and
the effect is that of gathering data blocks and
sending them out effectively as one block.

If one source block is dynamically broken up into
multiple destination blocks, it is called destination
chaining. This resuits in scattering of a biock.

This dynamic linking and unlinking of data blocks
makes the logical sequencing of data independent
of its physical sequencing in memory.

219

SAB 82257

Data Chaining
a) Linked List Chaining

b) List Chaining

Commang Pomter Command Pomter
________________ e) e
in Memory in Memory
Type 1 Command Type 1 Command
Link Pornter Source Ponter
Byte Count
Deshnation Pornter Chain List Pointer
Datu Pointer Byte Count
Not Used Not Used
Link Posber Data Porter
Channel Status Charnel Status 0~
Oato
Block Byte Count
Channel Command Block * Byte Cot Channel Command Block -
Data Pointer / yd <0~
te Count
Link Poieter e / o
it Dotu Porer
oo |
Data
Block Byte Count
.2 V\/
e Data
Data Ponter Block
Link Pointer *
“o-
Data 0
Block
*3
Linked Lists

Data
Block
#?2

Oata Cham List

Inthe case of linked list chaining (see figure a) above)
each data block has a descriptor containing
information on position of data block in memory,
length of data block, and a pointer to the next
descriptor.

During data transfer the data block 1is sent out first,
then 2 and so on till a 0 is encountered in the byte
count field.

220

The second type of data chaining is list chaining
(see figure b) above).

Unlike linked list chaining, here the data block
descriptors are continuous in a block and thus
determine the sequence of data blocks. The flexi-
bility lost in terms of predefined sequence is gained
in terms of linking time.

SAB 82257

Operating the SAB 82257

Reset

When activating the reset input, the SAB 82257 is
forced into its initial state. All channels and bus
activities are stopped, tristate lines are tristated
and the others enter the inactive state.

While the reset input is active, line A23/AREADY
and HLDA must be forced to the appropriate levels
to select the desired bus interface mode (see figures
on page 3, 40 and 52).

After deactivating reset the inactive state is main-
tained, in addition the state of the SAB 82257
registers is as follows:

- general mode register, general burst register,
general delay register, general status register
and the four channel status registers are set to
zero,

— all other registers and bits are undefined.

Note that the general mode register (GMR) should
be loaded first to select the mode of operation
before any other activity is started on the SAB 82257.

DMA Interface
The DMA interface consists of three lines:
® DREQ - DMA request,

® DACK — DMA acknowledge and
® EOD -endof DMA

The firsttwo lines work as request and acknowledge
lines to control synchronized DMA transfers as
known from conventional DMA controllers.

A special feature of the SAB 82257 are the bidirec-
tional EOD lines. Firstly they can be used as inputs to
receive an asynchronous external terminate signal
to terminate arunning DMA. Secondly, as an output,
they can be used to send out a pulse which interrupts
the CPU and/or signals to the peripheral a specific
status (e.g. transfer aborted, or end of a block, or
send/receive next block ...).

The EOD output signal can be generated synchro-
nously to a transfer (during the last transfer) or
asynchronously to the transfers by a specific
command.

In addition the EOD output of channel 2 can be used
as a collective interrupt output for all DMA channels
while the other three retain their normal function.

Slave Interface

The slave interface is used to access the SAB 82257
internal registers. Although nearly all of the
communication between CPU and SAB 82257 is
done via memory-based data blocks, some direct
accesses to SAB 82257 registers are necessary. For
example during the initialization phase the general

mode register must be written, or to start a channel
the command pointer register and the general
command register must be loaded. Also during the
debugging phase itis of great benefitto have access
to all of the SAB 82257 internal registers.

The slave interface is enabled by the CS input and
consists of the following lines:

© 30,31 — status lines (inputs)

® RD,WR —control lines (inputs)

® A0O-A7 — register address (inputs)

® D0O-D15 - data lines (inputs/outputs) and

® ADO—-AD15 - address/data lines (inputs/outputs)
for synchronous access in 186 mode

Note, that all of these lines are outputs if the
SAB 82257 is an active bus master.

In 186 mode and 286 mode two types of accesses
are possible:

— Synchronous access by means of the status lines.
Processor and SAB 82257 are directly coupled
and must use the same clock.

— Asynchronous access by using the control lines
RD and WR (processor and SAB 82257 may have
different clocks).

In all modes except the synchronous access in 186
mode the register address must be supplied on
address pins AOto A7. Using synchronous access
in 186 mode the address information is expected
at address/data lines ADO to AD7.

In remote mode only the asynchronous access is
possible because the SAB 82257 first has to
release its local bus to enable the register access.
On receiving an access request (activation of CS
input) the SAB 82257 releases its local bus as soon
as possible and signals this by activating the BREL
line. Now the CPU can accompilish its access.

Bus Arbitration

To arbitrate access to the bus between the

SAB 82257 and the processor, the signals HOLD and
HLDA serve for communication. Normally the

SAB 82257 competes for the bus via HOLD, the
processor grants access to the bus via HLDA. The
HLDA signal can also be deactivated in orderto force
the SAB 82257 off the bus for a certain reason

(kick off). After reactivation of HLDA, the SAB 82257
will again get control of the bus.

In 8086 mode this communication is done by pulses
via a single RQ/GT line which uses the HOLD pin.
In this case normally the HLDA input has no
function. Nevertheless, even in 8086 mode the
HLDA input can be used for kick-off. This provides
some kind of additional bus arbitration.

221

SAB 82257

Register Set

The following figure shows the user visible registers
of the SAB 82257. A set of 3 registers, called the
general registers, is used for all the 4 channels. The
mode register is being written to first after reset and
it describes the SAB 82257 environment — bus
widths, etc. The general command register (GCR)

is used to start and stop the DMA transfer on
different channels. The general status register
(GSR) shows the status of all the 4 channels; if the
channel is running, if interrupt is pending, etc.

There is a set of channel registers for each of the
4 channels. Most channel registers serve as cache
registers and need to be accessed only for
debugging. During normal operation they are
loaded automatically by the SAB 82257 (see next
paragraph).

The layout of register addresses is shown in the
figure on the next page. All register addresses are
even. Locations not designated in that figure are
reserved and should not be used.

SAB 82257 Register Set
General Registers
15 0
GSR Status
GMR Mode
GCR Command
GBR Burst
GDR Delay
7 0
Channel Registers (4 sets; 1 per channel)
23 0
CPR Command Pointer
SPR Source Pointer
DPR Destination Pointer
LPR List Pointer
BCR Byte Count
CCR Channel Command
DAR Assembly
15 CSR Channel Status
7 0

222

SAB 82257

Register Address Arrangement

Address Bits Address Bits 7, 6

0-5 00 01 10 1

0 GCR

2

4 GSR

6

8 GMR

A GBR

C GDR

E

10 CSRO CSR1 CSR 2 CSR 3

12 DARO DAR 1 DAR 2 DAR 3

14

16

18

1A

1C

1E

20 CPR LO CPR L1 CPR L2 CPR L3

22 CPR HO CPRH? CPR H2 CPR H3

24 SPR LO SPR L1 SPR L2 SPR L3

26 SPR HO SPR H1 SPR H2 SPR H3

28 DPR LO DPR L1 DPR L2 DPR L3

2A DPR HO DPR H1 DPR H2 DPR H3

2C

2E

30 LPR LO LPR L1 LPR L2 LPRL3

32 LPR HO LPR H1 LPR H2 LPR H3

34

36

38 BCR LO BCR L1 BCR L2 BCR L3

3A BCR HO BCR H1 BCR H2 BCR H3

3C CCR LO CCR L1 CCR L2 CCR L3

3E CCR HO CCR H1 CCR H2 CCR H3
GCR = General Command Register CPR = Command Pointer Register
GSR = General Status Register SPR = Source Pointer Register
GMR = General Mode Register DPR = Destination Pointer Register
GBR = General Burst Register LPR = List Pointer Register
GDR = General Delay Register BCR = Byte Count Register
CSR = Channel Status Register CCR = Channel Command Register

DAR = Data Assembly Register

223

SAB 82257

Register Description

General Mode Register

In the general mode register GMR (figure below) the
system wide parameters are specified.

Thisregister should be programmed first after reset;
with an 8-bit bus program low byte first.

General Mode Register (GMR)

15 14 13 9 7 3 2 1 0
EN MINT cYc 1/0 |Mem.
0 PRI 0 [RM [Res)|isys)
Clsf2]1]o 3{2]1]0 Bus | Bus
|—> Physical Bus Width
0= 8-bit
1 =16-bit

Remote Mode Enable
0 = Local mode
1 = Remote mode

—» Transfer Type
0 = Two-cycle
1 = Single-cycle

Channel Priority

00 = all fixed, chan. 0 highest
01 = Not allowed

10 = Not allowed

11 = all rotating

—» Interrupt Mask for Type 2
Channel Command
0 = Interrupt enabled
1 = Interrupt disabled

- C Interrupt Enable

0 = EOD2 pin = EOD2
1 = EOD2 pin = Common interrupt

224

SAB 82257

General Command Register

Individual channels are started and stopped by a GCR (figure below). The GCR is directly loaded by
command written to the general command register the CPU.

General Command Register (GCR)

Channel
3l2]1]o

| | Command

——— Interrupt Command

* Channel Select

001 = CONTINUE Channel(s) after it has been stopped
by the STOP command
010 = START Channel(s) = Command block at system/memory space
011 = START Channel(s) = Command block at resident I/0 space
100 = STOP Channel(s)
101 = l
110 =
111 = HALT Single-step channel(s): Start execution and stop
before next command block will be loaded

Not allowed

0 = NOP
1 = Clear interrupt(s) of channel(s)

225

SAB 82257

General Burst and Delay Register

It is possible to restrict the bus load generated by
the SAB 82257 on the CPU bus by programming
the burst and the delay register. The bus load is
defined by the formula given in figure a) below. The
factor b (burst) is programmed in the general burst
register GBR, t (delay time) in the general delay
register GDR (see figures b and c).

Since the SAB 82257 can also execute locked bus
cycles, the maximum burst length consists of b+3
(8-bit bus) or b+2 (16-bit bus) bus cycles. GBR and
GDR must be directly loaded by the CPU. Loading
GBR with 0 leads to no bus load limitations for the
SAB 82257 (default after reset).

General Burst and Delay Register

a) Bus loading

b) General Burst Register (GBR)

SAB 82258 CPU SAB 82258
on Bus on Bus on Bus
Burst ‘b’ Burst ‘b’
le— Delay-t" ——e{
Bus Load b
Due to SAB82258 b+t

-to Program ‘b’

Determines Max. Number of
Contiguous Bus Cycles from
SAB 82258

It GBR=0, No Limit

c) General Delay Register (GDR)

7 0
GBR

Bus

Cycleson —F> Counter
System Bus

-to Program ‘t’

Determines Min. Number of

7 0
GDR

Clock Cycles Between Burst Accesses
(default after reset=0,i.e. & T-states delay)

U

2 CLK Cycles —> Counter

226

SAB 82257

General Status Register

The general status register GSR (figure below)
shows the current states of all the channels.

General Status Register (GSR)

15 12 8 4 3 2 1 0
Chan. 3 Chan. 2 Chan. 1 Chan. 0

s/R[INT| DmsT [s/R[iNT[DmsT [s/RiNT] omsT [s/R]inT] DmsT

Status Channel 0

00 = Channel inactive/
stopped, no request

01 = Channel inactive/
stopped request pending
(channel started, but idling for
channel 3 in multiplexer
mode)

10 = Channel in organizational
processing

11 = DMA in pragress

— Interrupt Status
0 = No interrupt
1 = Interrupt pending

> Control Space Location

0 = Control space on RES bus
(remote mode) or 1/0 bus
(local mode)

1 = Control space on SYS bus
(remote mode) or memory
bus (local mode)

—* information about Channel 1
* Information about Channel 2
Information about Channel 3

227

SAB 82257

Channel Commands

The channel commands are contained in the
channel command block. 15 bits are used to specify
the command. There are two types of channel
commands:

® Type 1: for data movement
® Type 2: for command chaining control

The command block for a type 1 command is
26 bytes long (see figure on page 17).

The type 1 command fields (see figure on page 27)
contain information on:

a. Bus width of source and destination

b. If source and/or destination address should be
incremented or decremented or kept constant
during the transfer

c. If source/destination is in memory or /0 space
(local mode) or in system or resident space
(remote mode)

d. If data chaining (list or linked-list) is to be
performed

e. If the data transfer is synchronized (source or
destination).

228

Type 2 command blocks are 6 bytes long (see
figure on page 28) of which the first 2 bytes form the
command and the rest is either a relative dis-
placement or an absolute address for the JUMP
operation. There are two basic type 2 commands
(see figure on page 28):

a. JUMP - conditional and non-conditional

b. STOP — conditional and non-conditional

The conditional case tests for either of the 2 con-
dition bits which are altered at the termination of
any DMA operation:

® Termination due to byte count end
® Termination due to external terminate

It is thus possible to JUMP or STOP further
execution of commands based on any of these
conditions and optionally generate EOD or interrupt
signal.

The combination of type 1 and 2 commands gives
the SAB 82257 a high degree of “programmability”’.
It can thus execute quite complex algorithms with a
fairly low demand for CPU service.

SAB 82257

—

Type 1(DMA) Channel Command

15 13 12 11 10 9 8 7 4 3 2 1 0
Destination Source

wis[inc [pec|wio|wi|inc|pec|wo

SYN | 0 [EXT[EOD|SC [LLC|LC

Source Description
Associated

0 = I/O or resident

1 = Memory or system

Source Pointer

00 = Pointer not modified

01 = Decrement pointer

10 = Increment pointer

11 = No pointer (constant value)

L —————» Logical Bus Width
0 = 8-bit
1 = 16-bit
» Destination Description
Same as source description
I » Data Chaining
LLC LC
0 0 No chaining
0 1 List chaining
1 0 Linked list chaining
1 1 Not allowed

» Select Chaining
0 = Destination data chaining
1 = Source data chaining

» Enable EOD Output
-+ Enable External Terminate Input

» Synchronization
00 = Not valid (type 2 command)
01 = Source synchronization
10 = Destination synchronization
11 = No synchronization

(free running)

229

SAB 82257

Type 2 Command Blocks (for command chaining control)

Type 2 Command
Signed 16-Bit Displacement — Relative JUMP
—0-

Type 2 Command

24-Bit Pointer i — Absolute JUMP
—0-
Type 2 Command - Conditional STOP
—0- —Unconditional STOP
—0-

230

SAB 82257

Type 2 Command Format

15 13 1 10 8 7 5 4 3 1 0

Cond.
Code

0 0 |OpCode|ED | IT 0 0 0 0 O | 0 0

ET | BC

L Condition Code
Byte count = 0

External terminate (EOD received)

& Invert
Invert channel status bits before
comparing with condition code

—» Generate Interrupt
——» Generate EOD Pulse

Code
00 = Unconditional STOP
01 = Conditional STOP
10 = Conditional* JUMP relative
11 = Conditional* JUMP absolute

*) Unconditional JUMP when both condition code bits are set 1.

231

SAB 82257

Channel Status Register

For each channel there is a channel status register
(see figure below). This register shows the current
state of the appropriate channel.

Channel Status Register

7 6 5 4 3 1 0

DMA
Term.

0O |FE| H |SSH] 0 O

ETIBC

[Flags Set on DMA Termination

BC - Byte count end
ET — External terminate

Single-Step and Halt Mode
Channel operating
in SSH mode

— Halted
Channel in halted state

» Fatal Error
Fatal error has occurred

Timings

The bus timings in 286 and remote mode are
identical to that for SAB 80286, in the 186 and 8086
mode the timings are identical to that for SAB 80186.
For exact timings see timing diagrams of

AC Characteristics.

Asynchronous control inputs are specified with
setup and hold times which are only important to
determine whether the SAB 82257 responds to the
signal in the current cycle or the next cycle.

The following pages hold two sections of ac
characteristics and waveforms. The first section
refers to 286 mode and remote mode, the second
one to 186 mode and 8086 mode.

232

SAB 82257

Absolute Maximum Ratings "

Temperature under bias

Storage temperature

Voltage on any pin with respect to ground
Power dissipation

DC Characteristics 2
TA = 010 70°C; TC = 0to 100°C; VCC = +5V +10%

Oto 70°C
-65to +150°C
-05t0 +7V
3.6W

Symbol Parameter Limit values Unit Test condition
min. max.
VIL Input low voltage —-0.5 +0.8 Vv -
(except CLK)
VIH Input high voltage 2.0 VCC+0.5|V -
(except CLK)
VoL Output low voltage - 0.45 I0L = 3.0mA
VOH Output high voltage 24 - IOH = —400 uA
ICC Power supply current - 450 mA TA = 25°C,
all outputs open
ILI Input leakage current
S0, 51, S2, BHE, RD, WR, M/IO - —-200 HA 0V =VIN=VCC
HOLD (RQ/GT mode), EOD - 15 mA 0V =< VIN = VCC
A23 (AREADY), A21 S B -1.5 mA 0V=VIN=VCC
other pins — +10 uA 0V =VIN=VCC
ILO Output leakage current - +10 A 0.45V = VOUT = VCC
VCL Clock input low voltage -0.5 +0.6 \ -
VCH Clock input high voltage 3.8 VCC+1.0|V -
CIN Capacitance of inputs — 10 pF fC=1MHz
(except CLK)
Cio Capacitance of I/0 or outputs - 20 pF fC = 1 MHz
CCLK Capacitance of CLK input - 12 pF fC = 1 MHz

" Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. Exposure to absolute maximum rating conditions for extended periods may affect device

reliability.

2 Clock must be applied.
3 This specification is valid only during RESET.

233

SAB 82257

AC Characteristics SAB 82257 (286 mode)
TA =0to0 70°C; TC = 0to 100°C; VCC = +5V +10%
Any output timing is measured at 1.5V.

Symbol Parameter Limit values Unit Test condition
min. max.
1 CLK cycle period 62 250 ns -
2 CLK low time 15 230 ns at1.0v
3 CLK high time 20 235 ns at3.6Vv
4 Address/control output delay - 60 ns CL = 100 pF
5 Status output delay - 40 ns CL = 100 pF
6 Sync data setup time 10 - ns -
7 Sync data hold time 5 - ns -
8 Sync READY setup time 38 - ns -
9 Sync READY hold time 25 - ns -
10 Sync control input setup time 20 - ns -
1 Sync control/address input hold time | 20 - ns -
12 Sync address setup time 2.5 - ns -
13 Data/control output delay - 50 ns CL = 100 pF
14 Data/control float delay - 50 ns -
15 BHE setup time 60 - ns -
16 Write command width 4CLK+40 - ns -
17 Async data setup time 2CLK+30 — ns -
18 Async address setup time 20 - ns -
19 Async data access time - 5CLK+70 ns -

234

SAB 82257

AC Characteristics SAB 82257 (286 mode; cont’d)

Symbol Parameter Limit values Unit Test condition
min. max.

28 Mode select setup time 2CLK+20| - ns -

29 Mode select hold time 0 - ns -

33 Command recovery time 4CLK+40| — ns -

34 CLK rise time - 15 ns 1.0to 3.6V

35 CLK fall time - 15 ns 3.6t0 1.0V

36 DREQ inactive after DACK active 0 - ns -

37 CS active response time - 16CLK ns Note 1
+80

39 CS active after BREL inactive 0 - ns -

42 HOLD active to HLDA active 0 - ns -

43 Async input setup time 20 - ns Note 2

44 Async input hold time 20 - ns Note 2

47 Async HLDA high time 2CLK+40| — ns Note 3

49 HOLD output low time 4CLK-50| - ns -

50 HLDA low to HOLD low delay - 16CLK ns Note 1
+70

53 Read command width T19 - ns -

54 Async access setup time 20 - ns -

55 Async access hold time 20 - ns -

Note 1: If wait states are inserted, the maximum value has to be extended by the time required for the wait

Note 2:

Note 3:

states for 3 bus cycles.

These specifications are given for testing purposes only to assure recognition at a specific clock
edge.

This timing is valid if the signal is not synchronous, i.e. does not meet the specified setup and hold
times.

235

SAB 82257

AC Characteristics SAB 82257-6 (286 mode)
TA =0t070°C; TC = 0to 100°C; VCC = +5V £10%
Any output timing is measured at 1.5V.

Symbol Parameter Limit values Unit Test condition
min. max.
1 CLK cycle period 80 250 ns -
2 CLK low time 20 225 ns at1.0v
3 CLK high time 25 230 ns at3.6Vv
a4 Address/control output delay - 75 ns CL = 100 pF
5 Status output delay - 55 ns CL = 100 pF
6 Sync data setup time 20 - ns -
7 Sync data hold time 8 - ns -
8 Sync READY setup time 50 - ns -
9 Sync READY hold time 35 - ns -
10 Sync control input setup time 30 - ns -
1 Sync control/address input hold time | 30 - ns -
12 Sync address setup time 3 - ns -
13 Data/control output delay 0 65 ns CL = 100 pF
14 Data/control float delay - 65 ns -
15 BHE setup time 80 - ns -
16 Write command width 4CLK+40(- ns -
17 Async data setup time 2CLK+50| — ns -
18 Async address setup time 30 - ns -
19 Async data access time - 5CLK+95]| ns -

236

SAB 82257

AC Characteristics SAB 82257-6 (286 mode; cont’d)

Symbol Parameter Limit values Unit Test condition
min. max.

28 Mode select setup time 2CLK+30| — ns -

29 Mode select hold time 0 - ns -

33 Command recovery time 4CLK+40| — ns -

34 CLK rise time - 15 ns 1.0to 3.6V

35 CLK fall time - 15 ns 3.6to0 1.0V

36 DREQ inactive after DACK active 0 - ns -

37 CS active response time - 16CLK ns Note 1
+10

39 CS active after BREL inactive 0 - ns -

42 HOLD active to HLDA active 0 - ns -

43 Async input setup time 30 - ns Note 2

44 Async input hold time 30 - ns Note 2

47 Async HLDA high time 2CLK+60| — ns Note 3

49 HOLD output low time 4CLK—-65| — ns -

50 HLDA low to HOLD low delay - 16CLK ns Note 1
+95

53 Read command width T19 - ns -

54 Async access setup time 30 - ns -

55 Async access géld time 30 - - ns -

Note 1: If wait states are inserted, the maximum value has to be extended by the time required for the

Note 2:

Note 3:

wait states for 3 bus cycles.

These specifications are given for testing purposes only to assure recognition at a specific clock
edge.

This timing is valid if the signal is not synchronous, i.e. does not meet the specified setup and hold
times.

237

SAB 82257

Waveforms

Clock Signal (286 mode)

Mode Selection on RESET (286 mode)

CLK

RESET

AZ3

238

SAB 82257

Major Timing for Active Bus Cycles (286 mode)

- [4
A23-A0
MIT0
-© 1-®
BHE

4l
o

S

D15-D0

(Read)

D15-DO

(write) !

READYZ!

DACKn

mB)

" |f executing a single cycle transfer, D15 to DO float like during read cycles!
2 TC will be repeated if READY is inactive at the sampling point (end of current TC).
¥ Initiated by terminal count.

239

SAB 82257

Synchronous Access (286 mode)

}«T-smre—-]

(LK

TS

TC |

5051
(Input)

"

A7-A0
(Input)

o15-00"
(Write

Access)

015-po"

(Read
Access)

READY V)

" The processor will repeat TC, if READY is not active at the sampling point (end of current TC).
The SAB 82257 will output data until the end of the repeated TC (read access) or sample the data
bus again at the beginning of the repeated TC (write access).

240

SAB 82257

Asynchronous Access (286 mode)

__—@W

(®

AT-AO
(Input)

D15-D0
{Input)

Y\

WR

D15-D0

(Output) /

-\

RD

241

SAB 82257

DMA Control (286 mode)

CLK _| l (’"
Without Bus
Arbitration @
DREQn \\
—~| (3) ~
Ok 6
DACKn 2

ESiEG
0

\ /ln
| W P

transfers will be executed.

by the execution of higher

® Minimum time to execute

priority requests.

bus cycle.

With Bus
Arbitration 3 L@
L1 55 1
DREQn \
$51—55 55 - ¢ o
s 2 £ E
HOLD
—_— {W—
u': —e £
HLDAY \
e -0 &
—_— ¢ I* £
DACKn 2 7
A23- AOBHE,) —
D15-DO,M/IG, S S 4) }——-ss—
5051) «
— 3CLK f=— == 5) =]

" If the trailing edge of DREQn is received later, a continuous request is assumed and subsequent
? Refers to the highest priority request. Acknowledging of lower priority requests may be delayed

¥ The SAB 82257 can be forced off the bus by driving HLDA inactive (see “Bus Arbitration’’).
4 Signals driven active. For exact timing refer to ““Major Timing for Active Bus Cycles”.
® The SAB 82257 may execute additional bus cycles, e.g. for command chaining.

7' 1f the SAB 82257 does not perform subsequent bus cycles after this DMA cycle (transfer on another
channel or organizational processing), the DACKn signal can be prolonged by two T-states.

242

SAB 82257

F EOD/INTOUT Timing (286 mode)

INTOUT

ot \ /
(Output)

EODn
(Input)

"nitiated by type 2 command.
2 EOD input minimum pulse width is 3 CLKs if the signal is asynchronous.

243

SAB 82257

Bus Arbitration (286 mode)

‘UUJ}JTLI‘U‘LHLHU‘L
HOLD
8 ~ Bus
\
HLDA \l) Access
@) ~ =®
A23-A0,BHE, r
D15-D0M/TO, S
S0.51
O
HOLD
is Bus
HLDA Release
- ~®
A23-A0,BHE, Y
D15-D0,M/C, > 5
50,51
—] 13 @—ﬂ
HOLD 2)
e I-—@ ——
Kick
HLDA)\ fOff
A23-A0BHE, -4
D15-D0,M/I0, }
S0.51 4

" Minimum HLDA high time before kick-off to respond to HOLD signal.
2 Earliest possible reactivation of HOLD after deactivation of HLDA.

244

SAB 82257

Access in Remote Mode

o UL
)

s T

é i
N
ot Erjg

BREL
‘)‘)
A23-A0 BHE ——2
D15-D0,) %
$0,51 P

D.WR

245

SAB 82257

AC Characteristics SAB 82257 (186 mode)

TA =01t070°C; TC = 0to 100°C; VCC = +5V £10%

Any output timing is measured at 1.5V.

Symbol Parameter Limit values Unit Test condition
min. max.
4 Control output delay - 60 ns -
6 Sync address/data setup time 10 - ns -
7 Sync data hold time 5 - ns -
10 Sync control input setup time 20 - ns -
11 Sync control/address input hold time | 20 - ns -
13 Data/control delay - 50 ns CL = 100 pF
14 Data float delay - 50 ns -
16 Write command width 2CLK+40 - ns -
17 Async data setup time CLK+30 |- ns -
18 Async address setup time 20 - ns -
19 Async data access time - 2CLK ns -
+T22+70
20 CLK cycle period 125 500 ns -
21 CLK low time 55 - ns at 1.6V
22 CLK high time 55 - ns at 1.5V
23 CLK rise time - 15 ns 1.0to 3.5V
24 CLK fall time - 15 ns 3.5t0 1.0V
25 AREADY active setup time 20 - ns Note 2
26 AREADY hold time 15 - ns Note 2
27 AREADY inactive setup time 35 - ns -

Note 2: These specifications are given for testing purposes only to assure recognition at a specific clock

246

edge.

SAB 82257

AC Characteristics SAB 82257 (186 mode; cont’d)

Symbol Parameter Limit values Unit Test condition
min. max.
28 Mode select setup time 2CLK+20| — ns -
29 Mode select hold time 0 - ns -
30 Address/data output delay 10 50 ns CL = 20to 200 pF
31 Status output delay 10 55 ns -
32 Float delay 10 50 ns -
33 Command recovery time 2CLK +40| — ns -
36 DREQ inactive after DACK active 0 - ns -
38 ALE output delay - 40 ns -
40 Address/control input hold time 10 - ns -
41 Address input setup time 10 - ns -
42 HOLD active to HLDA active 0 - ns -
43 Async control input setup time 20 - ns Note 2
44 Async control input hold time 20 - ns Note 2
45 HLDA hold time 10 - ns -
46 Async HLDA high time CLK+40 |- ns Note 3
48 HOLD output delay 5 70 ns -
51 HOLD output low time 2CLK-70] — ns -
52 HLDA low to HOLD low delay - 12CLK ns Note 1
+90
53 Read command width T19 - ns -
54 Async access setup time 20 - ns -
55 Async access hold time 20 - ns -
56 ALE output delay - 40 ns -
57 SREADY hold time 15 - ns -
Note 1: If wait states are inserted, the maximum value has to be extended by the time required for the

Note 2:

Note 3:

wait states for 2 bus cycles.

These specifications are given for testing purposes only to assure recognition at a specific clock
edge.

This timing is valid, if the signal is not synchronous, i.e. does not meet the specified setup and hold
times.

247

SAB 82257

AC Characteristics SAB 82257-6 (186 mode)
TA = 0to 70°C; TC = 0to 100°C; VCC = +5V +10%
Any output timing is measured at 1.5V.

Symbol Parameter Limit values Unit Test condition
min. max.
a4 Control output delay - 75 ns -
6 Sync address/data setup time 20 - ns -
7 Sync data hold time 8 - ns -
10 Sync control input setup time 25 - ns -
11 Sync control/address input hold time | 25 - ns -
13 Data/control delay 0 65 ns CL = 100 pF
14 Data float delay - 80 ns -
16 Write command width 2CLK+40 — ns -
17 Async data setup time CLK+50 |- ns -
18 Async address setup time 30 - ns -
19 Async data access time - 2CLK ns -
+T22+85
20 CLK cycle period 160 500 ns -
21 CLK low time 75 - ns at 1.5V
22 CLK high time 75 - ns at 1.5V
23 CLK rise time - 15 ns 1.0to 3.5V
24 CLK fall time - 15 ns 3.6t0 1.0V
25 AREADY active setup time 20 - ns Note 2
26 AREADY hold time 15 - ns Note 2
27 AREADY inactive setup time 35 - ns -

Note 2: These specifications are given for testing purposes only to assure recognition at a specific clock
edge.

248

SAB 82257

AC Characteristics SAB 82257-6 (186 mode; cont’d)

Symbol Parameter Limit values Unit Test condition
min. max.
28 Mode select setup time 2CLK+30| — ns -
29 Mode select hold time 0 - ns -
30 Address/data output delay 10 55 ns CL = 20 to 200 pF
31 Status output delay 10 75 ns -
32 Float delay 10 55 ns -
33 Command recovery time 2CLK+40| - ns -
36 DREQ inactive after DACK active 0 - ns -
38 ALE output delay - 50 ns -
40 Address/control input hold time 15 - ns -
41 Address input setup time 15 - ns -
42 HOLD active to HLDA active 0 - ns -
43 Async control input setup time 30 - ns Note 2
44 Async control input hold time 30 - ns Note 2
45 HLDA hold time 10 - ns -
46 Async HLDA high time CLK+60 |- ns Note 3
48 HOLD output delay 5 90 ns -
51 HOLD output low time 2CLK—-90y — ns -
52 7HL"DA low to HOLD low delay - 12CLK ns " | Note 1
+120
53 Read command width T19 - ns -
54 Async access setup time 30 - ns -
55 Async access hold time 30 - ns -
56 ALE output delay - 55 ns -
57 SREADY hold time 15 - ns -
Note 1: If wait states are inserted, the maximum value has to be extended by the time required for the

Note 2:

Note 3:

wait states for 2 bus cycles.

These specifications are given for testing purposes only to assure recognition at a specific clock
edge.

This timing is valid, if the signal is not synchronous, i.e. does not meet the specified setup and hold
times.

249

SAB 82257

Waveforms

Clock Signal (186 mode)

Mode Selection on RESET (186 mode)

j r:%% ~ ~®©

RESET

AREADY

" To operate in 186 mode with HOLD/HLDA protocol.
? To operate in 8086 mode with RQ/GT protocol.

250

SAB 82257

Major Timing for Active Bus Cycles (186 mode)

(LK

AD19/S6-AD16/S3

Active
Read
Cycle

| Active
o Write

| Cycle

@.;__ -

red —t{(‘? : —
- © L]:@_____

" A wait state is inserted after T3 or TW, whenever the bus is not ready at the beginning of T3 or TW
(see "“Bus Cycle Termination’). The status must be valid just prior to T4.

2 For a single-cycle transfer the timing of AD15-AD0, DT/R and DEN is identical to a read cycle.
AD15-ADO will float as during a read cycle.

3 Initiated by terminal count.

251

SAB 82257

Bus Cycle Termination (186 mode)

IT-Sfufes{ 12 [™ ITZ/TW’ T4 }

(LK

AREADY

Bus Not Ready Bus Ready

" Only the rising edge of AREADY is synchronized internally to CLK.
The falling edge must be synchronized externally.

Synchronous Access (186 mode)

AD7-ADO
(Write Address Data
Access)

- o
AD7-ADO
(Read Address { Data)—
Access) —

! Additional wait cycles may be inserted. Status must be valid just prior to T4.

252

SAB 82257

Asynchronous Access (186 mode)

AT7-A0
(Input)
D15-DO i
(Input)
w T S
e ——— -
~ +®
D15-D0 Ny
(Output)
& O
G \ 1
-

253

SAB 82257

DMA Control (186 mode)

’T-Sful!s’ ' it [12 l 73 | Th]

(LK -_W ' | I | | I I | | | | I
I 43
Without Bus Arbitration E@

)

DREQn \\\ 1

36 ’

G~ = 3
P — =49 \\
2.51.50
|\
1(ﬁ
RD/WR
— \

DACKn! sckmin~{ _ 6)
With Bus Arbitration

15

oRean S A —

HOLD

HLDAY
(13)~

Sy 2o

A19/S6- A16/S3, — @s:

DEN.WR.RD ‘@ D

DACKn = 20LK [= 2CLK {= \ ‘1 }Ef
=51

" if the trailing edge DREQn is received later, a continuous request is assumed and subsequent
transfer will be executed.

2 Refers to the highest priority request. Acknowledging of lower priority requests may be delayed
by the execution of higher priority requests.

¥ The SAB 82257 can be forced off the bus by driving HLDA inactive (see ““Bus Arbitration”).
9 Signals driven active. For exact timing refer to “Major Timing for Active Bus Cycles’".
® The SAB 82257 may execute additional bus cycles, e.g. for command chaining.

¢ If the SAB 82257 does not perform subsequent bus cycles after this DMA cycle (transfer on another
channel or organizational processing), the DACKn signal can be prolonged by two T-states.

254

SAB 82257

EOD/INTOUT Timing (186 mode)

—

=
INTOUT

mﬂ

(Output)

EODn r
(Input) L 2) /

" Initiated by type 2 command.
2 EOD input minimum pulse width is 2CLKs if the signal is asynchronous.

« JUUUUUL
X

255

SAB 82257

Bus Arbitration (186 mode)

« L UL

HOLD

Gl
w i 0
HLDA) Alcjcsess
L S SE— ——
bl

A19/56-A16/S3,
AD15-ADOBHE,
S2-S0.0TIR,

EN.WR,

o

O
(=]

!
®

HOLD

L
M

i Bus
HLDA Release

®

A19/S6-A16/S3,
AD15-ADO,BHE,
$2-S0.0T/R,

r

HOLD 2)

Kick
HLDA Off

A19/S6-A16/S3, ~ =W

AD15-ADO,BFE, K
S2-S00TR,)

EN,WR,R 4

" Minimum HLDA high time before kick-off to respond to HOLD signal.
? Earliest possible reactivation of HOLD after deactivation of HLDA.

256

SAB 82257

(LK

DREQN

RQ/GT

A19/56,A161S3,
AD15-AD0 BHE
S2-S0DTRR.
DEN.WR.RD

DACKn !

T DMA Control with RQ/GT Protocol (8086 mode)

[

£ |

P
ST

—

7’

O

T

Reguest Grant

@~

—]
Release

(-

}___

(P

Fee- b}

" |f the trailing edge DREQn is received later, a continuous request is assumed and subsequent
bus cycles are executed.

2 Signals driven active. For exact timing refer to ‘‘Major Timing for Active Bus Cycles"".

3 Refers to the highest priority request. Acknowledge of lower priority requests may be delayed
by higher priority requests.

4 The SAB 82257 may execute additional bus cycles, e.g. for command chaining.

257

SAB 82257

Package Outline
Plastic Package, Leaded Chip Carrier, PLCC 68
Pin No. 1 Mark
68
E @]

q o

q p

q p

q p

q u] ‘S_ g_

q p] T

4———41—————— — M m

; A

: b |

q p |

g p

q p

q p

q p

" !
oTTT TS o
1,27 081max
e
Dimensions in mm

Ordering Information
Type Description Ordering code
SAB 82257-N High-performance DMA controller, 8 MHz Q67120-P176
SAB 82257-6-N High-performance DMA controller, 6 MHz Q67120-P179

258

Siemens Worldwide (Addresses)

Siemens AG, Bereich Bauelemente
BalanstraBe 73, Postfach 8017 09, D-8000 Miinchen 80
= (089) 4144-0 52108-0 FAX (089) 4144-2689

Siemens Worldwide

Federal Republic of Germany and Berlin (West)

Siemens AG

Salzufer 6-8

1000 Berlin 10

2 (030) 3939-1, 1x 1810-278
FAX (030) 3939-2630

Ttx 308190 = sieznb

Siemens AG

Contrescarpe 72

Postfach 107827

2800 Bremen

2 (0421) 364-0, Tx 245451
FAX (0421) 364-2687

Siemens AG

Lahnweg 10

Postfach 1115

4000 Diisseldorf 1

2 (0211) 399-0, 7x 8581301
FAX (0211) 399-2506

Siemens AG

Rodelheimer LandstraBe 5-9
Postfach 111733

6000 Frankfurt 1

2 (069) 797-0, Tx/ 414131
FAX (069) 797-2253

Siemens AG

Lindenplatz 2

Postfach 105609

2000 Hamburg 1

= (040) 282-1,1Tx/ 215584-0
FAX (040) 282-2210

Siemens AG

Am Maschpark 1

Postfach 5329

3000 Hannover 1

2 (0511) 129-0, 1x/ 922333
FAX (0511) 129-2799

Siemens AG
Richard-Strauss-StraBe 76
Postfach 202109

8000 Miinchen

(089) 9221-0
Tx1529421-19

FAX (089) 9221-4390

Siemens AG
Von-der-Tann-StraBe 30
Postfach 4844

8500 Niirnberg 1

e (0911) 654-0, Tx 622251
FAX (0911) 654-3436. 3464

Siemens AG
Geschwister-Scholl-StraBe 24
Postfach 120

7000 Stuttgart 1

= (0711) 2076-1, Tx 723941
FAX (0711) 2076-706

EUROPE

Austria

Siemens Aktiengesellschaft
Osterreich

Postfach 326

A-1031 Wien

2 (0222) 7293-0, 7x 1372-0

Belgium

Siemens S.A.

chaussée de Charleroi 116
B-1060 Bruxelles

@ (02) 536-2111, Tx 21347

Denmark

Siemens A/S

Borupvang 3

DK-2750 Ballerup

2 (02) 656565, Tx 35313

Finland

Siemens Osakeyhtio

Fach 8

SF-00101 Helsinki 10

2 (0) 1626-1, Tx 124465

France

Siemens S.A.

B.P. 109

F-93203 Saint-Denis CEDEX 1
2 (1) 8206120, Tx 620853

Great Britain

Siemens Ltd.

Siemens House

Windmill Road
GB-Sunbury-on-Thames
Middlesex TW 16 7HS

2 (09327) 85691, Tx 8951091

Greece

Siemens AE

Voulis 7

PO.B. 3601

GR-10247 Athen

@ (01) 3293-1, 7x 216291

Ireland

Siemens Ltd.

Unit 8-11 Slaney Road
Dublin Industrial Estate
Finglas Road

Dublin 11

@ (01) 302855, Tx 24129

Italy

Siemens Elettra S.p.A.

Via Fabio Filzi, 29

Casella Postale 10388
1-20100 Milano

= (02) 67661, Tx. 330261

Netherlands

Siemens Nederland NV.
Postb. 16068

NL-2500 BB Den Haag

= (070) 782782, 7x 31373

Norway

Siemens A/S

Dstre Aker vei 90
Postboks 10, Veitvet
N-0518 Oslo 5

@ (02) 153090, 7x 18477

Portugal

Siemens S.AR.L.

Avenida Almirante Reis, 65
Apartado 1380

P-1100 Lisboa-1

@ (01) 538805, 7x 12563

Spain

Siemens S.A.

Orense, 2

Apartado 155

E-28080 Madrid

2 (01) 4552500, '1x 43320

Sweden

Siemens AB

Halsingegatan 40

Box 23141

$-10435 Stockholm

2 (08) 161-100, 7x 19880

Switzerland
Siemens-Albis AG
FreitagerstraBe 28

Postfach

CH-8047 Ziirich

e (01) 495-3111, 7x 558911

Turkey

ETMAS Elektrik Tesisati ve
Muhendislik A.S.

Meclisi Mebusan Caddesi 55/35
Findikli

PK. 1001 Karakoey

Istanbul

2 009011/452090, Tx 24233

AFRICA
South African Republic

Siemens Limited

Siemens House,

PO.B. 4583

2000 Johannesburg

2 (011) 7159111, [Tx/ 4-22524

AMERICA

Argentina

Siemens S.A.

Avenida Pte. Julio A. Roca 516
Casilla Correo Central 1232
RA-1000 Buenos Aires

2 (01) 00541/300411,1Tx/ 21812

Brazil

Siemens S.A.

Sede Central

Caixa Postal 1375,
01051 Sao Paulo-SP
2 (011) 833-2211
Tx 11-23641

Canada

Siemens Electric Limited
7300 Trans-Canada Highway
PO.B. 7300, Pointe Claire,
Québec HIR 4R6

= (514) 6957300,

Tx] 05822778

US.A.

Power semiconductors:
Siemens Components. Inc.
Colorado Components Division
800 Hoyt Street

Broomfield, Colorado 80020
= (303) 469-2161

Tx/ 454357 sie colo

Intelligent displays
Siemens Components, Inc.
Optoelectronic Division
19000 Homestead Road
Cupertino, California 95014
= (408) 257-7910

Tx/ 352084 sie lit opto

All other products:
Siemens Components, Inc.
Special Electronics Division
186 Wood Avenue South
Iselin, New Jersey 08830
2 (201) 321-3400

Tx| 844491

ASIA

Hongkong

Jebsen & Co., Ltd.

Siemens Division

PO.B. 97

Hongkong

@ (05) 8233777, 1x 73221

India

Siemens India Ltd.

Head Office

134-A, Dr. Annie Besant Road,
Worli

PO.B. 6597

Bombay 400018
4938786, x 75142

Japan

Fuji Electronic Components Ltd.
New Yurakucho Bldg., 8F

12-1, Yurakucho 1-Chome,
Chiyoda-ku

Tokyo 100

2 (03) 201-2401, 7x 32182

Korea

Siemens Electrical
Engineering Co., Ltd.
C.PO.B. 3001

Seoul

@ (02) 275-6111, Tx 23229

Singapore

Siemens Components Pte. Ltd
Promotion Office

10-15 E, 5th floor

47 Ayer Rajah CrescentNo.06-12
Singapore 0513

7760044, Tx RS 21000

Taiwan

TAl Engineering Co. Ltd.

6th Floor Central Building

108, Chung Shan N. Rd. Sec. 2
PO.Box 68-1882

Taipei

5363171, Tx: 27860

O]

AUSTRALIA

Siemens Ltd

544 Church Street, Richmond
Melbourne, Vic. 3121

2 (03) 4207111, Tx/ 30425

e 12/85

